Subdiffusive behavior of random walk on a random cluster

Harry Kesten

Annales de l'I.H.P. Probabilités et statistiques (1986)

  • Volume: 22, Issue: 4, page 425-487
  • ISSN: 0246-0203

How to cite


Kesten, Harry. "Subdiffusive behavior of random walk on a random cluster." Annales de l'I.H.P. Probabilités et statistiques 22.4 (1986): 425-487. <>.

author = {Kesten, Harry},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {symmetric random walk on a random graph; critical branching process; infinite cluster; percolation},
language = {eng},
number = {4},
pages = {425-487},
publisher = {Gauthier-Villars},
title = {Subdiffusive behavior of random walk on a random cluster},
url = {},
volume = {22},
year = {1986},

AU - Kesten, Harry
TI - Subdiffusive behavior of random walk on a random cluster
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1986
PB - Gauthier-Villars
VL - 22
IS - 4
SP - 425
EP - 487
LA - eng
KW - symmetric random walk on a random graph; critical branching process; infinite cluster; percolation
UR -
ER -


  1. [1] S. Alexander and R. Orbach, Density of states on fractals: « fractons » ; J. Physique Lett., t. 43, 1982, L625-631. 
  2. [2] K.B. Athreya and P.E. Ney, Branching Processes, 1972, Springer-Verlag. Zbl0259.60002MR373040
  3. [3] Y.S. Chow and H. Teicher, Probability Theory, 1978, Springer-Verlag. Zbl0399.60001MR513230
  4. [4] P.G. De Gennes, La percolation : un concept unificateur, La Recherche, t. 7, 1976, p. 919-927. 
  5. [5] A. De Masi, P.A. Ferrari, S. Goldstein and W.D. Wick, An invariance principle for reversible Markov processes with application to random motions in random environments, (1985, preprint). Zbl0713.60041
  6. [6] P.A. Doyle and J.L. Snell, Random Walk and Electric Networks, Carus Math. Monograph, No. 22, 1984, Math. Assoc. of America. Zbl0583.60065MR920811
  7. [7] R. Durrett, Conditioned limit theorems for some null recurrent Markov processes, Ann. Probab., t. 6, 1978, p. 798-828. Zbl0398.60023MR503953
  8. [8] W. Feller, An Introduction to Probability Theory and its Applications, Vol. I, 3rd ed., John Wiley and Sons, 1968. Zbl0155.23101MR228020
  9. [9] D. Griffeath and T.M. Liggett, Critical phenomena for Spitzer's reversible nearest particle systems, Ann. Probab., t. 10, 1982, p. 881-895. Zbl0498.60090MR672290
  10. [10] T.E. Harris, The Theory of Branching Processes, Springer-Verlag and Prentice Hall, 1963. Zbl0117.13002MR163361
  11. [11] S. Havlin, D. Movshovitz, B. Trus and G.H. Weiss, Probability densities for the displacement of random walks on percolation clusters, J. Phys. A. Math. Gen., t. 18, 1985, L719-722. 
  12. [12] C.C. Heyde, On large deviation probabilities in the case of attraction to a non-normal stable law, Sankhya, Ser. A, t. 30, 1968, p. 253-258. Zbl0182.22903MR240854
  13. [13] P. Jagers, Branching Processes with Biological Applications, John Wiley and Sons, 1950. Zbl0356.60039
  14. [14] H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2, Comm. Math. Phys., t. 74, 1980, p. 41-59. Zbl0441.60010MR575895
  15. [15] H. Kesten, Percolation Theory for Mathematicians, Birkhauser-Boston, 1982. Zbl0522.60097MR692943
  16. [16] H. Kesten, The incipient infinite cluster in two-dimensional percolation, to appear in Theor. Prob. Rel. Fields, 1986. Zbl0584.60098MR859839
  17. [17] R. Künnemann, The diffusion limit for reversible jump processes on Zd with periodic random bond conductivities, Comm. Math. Phys., t. 90, 1983, p. 27-68. Zbl0523.60097MR714611
  18. [18] F. Leyvraz and H.E. Stanley, To what class of fractals does the Alexander-Orbach conjecture apply?Phys. Rev. Lett., t. 51, 1983, p. 2048-2051. 
  19. [19] M. Loeve, Probability Theory, 4th ed., Springer Verlag, 1977. Zbl0359.60001MR651017
  20. [20] B.B. Mandelbrot and S. Kirkpatrick, Solvable fractal family, and its possible relation to the backbone at percolation, Phys. Rev. Lett., t. 47, 1981, p. 1771-1774. MR637547
  21. [21] P.A. Meyer, Martingales and Stochastic Integrals I, Lecture Notes in Math, t. 284, 1972, Springer-Verlag. Zbl0239.60001MR426145
  22. [22] C.D. Mitescu and J. Roussenq, Diffusion on percolation structures, in Percolation Structures and Processes, Ann. Israel. Phys. Soc., t. 5, 1983, Eds. G. Deutscher, R. Zallen and J. Adler. 
  23. [23] A.G. Pakes, Some limit theorems for the total progeny of a branching process, Adv. Appl. Prob., t. 3, 1971, p. 176-192. Zbl0218.60075MR283892
  24. [24] R. Rammal and G. Toulouse, Random walk on fractal structures and percolation clusters, J. Physique-Lett., t. 44, 1983, L13-22. 
  25. [25] P.D. Seymour and D.J.A. Welsh, Percolation probabilities on the square lattice, Ann. Discrete Math., t. 3, 1978, p. 227-245. Zbl0405.60015MR494572
  26. [26] R.S. Slack, A branching process with mean one and possibly infinite variance, Z. Wahrsch. verw. Geb., t. 9, 1968, p. 139-145. Zbl0164.47002MR228077
  27. [27] J. Straley, The ant in the labyrinth: diffusion in random networks near the percolation threshold, J. Phys., Solid State Phys., t. C13, 1980, p. 2991-3002. 
  28. [28] J. Van Den Berg and H. Kesten, Inequalities with applications to percolation and reliability, J. Appl. Prob., t. 22, 1985, p. 556-569. Zbl0571.60019MR799280

Citations in EuDML Documents

  1. David Croydon, Convergence of simple random walks on random discrete trees to brownian motion on the continuum random tree
  2. Martin T. Barlow, Richard F. Bass, The construction of brownian motion on the Sierpinski carpet
  3. Martin T. Barlow, Yuval Peres, Perla Sousi, Collisions of random walks
  4. David Aldous, Jim Pitman, Tree-valued Markov chains derived from Galton-Watson processes
  5. Romain Abraham, Jean-François Delmas, Hui He, Pruning Galton–Watson trees and tree-valued Markov processes

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.