Subdiffusive behavior of random walk on a random cluster
Annales de l'I.H.P. Probabilités et statistiques (1986)
- Volume: 22, Issue: 4, page 425-487
- ISSN: 0246-0203
Access Full Article
topHow to cite
topKesten, Harry. "Subdiffusive behavior of random walk on a random cluster." Annales de l'I.H.P. Probabilités et statistiques 22.4 (1986): 425-487. <http://eudml.org/doc/77287>.
@article{Kesten1986,
author = {Kesten, Harry},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {symmetric random walk on a random graph; critical branching process; infinite cluster; percolation},
language = {eng},
number = {4},
pages = {425-487},
publisher = {Gauthier-Villars},
title = {Subdiffusive behavior of random walk on a random cluster},
url = {http://eudml.org/doc/77287},
volume = {22},
year = {1986},
}
TY - JOUR
AU - Kesten, Harry
TI - Subdiffusive behavior of random walk on a random cluster
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1986
PB - Gauthier-Villars
VL - 22
IS - 4
SP - 425
EP - 487
LA - eng
KW - symmetric random walk on a random graph; critical branching process; infinite cluster; percolation
UR - http://eudml.org/doc/77287
ER -
References
top- [1] S. Alexander and R. Orbach, Density of states on fractals: « fractons » ; J. Physique Lett., t. 43, 1982, L625-631.
- [2] K.B. Athreya and P.E. Ney, Branching Processes, 1972, Springer-Verlag. Zbl0259.60002MR373040
- [3] Y.S. Chow and H. Teicher, Probability Theory, 1978, Springer-Verlag. Zbl0399.60001MR513230
- [4] P.G. De Gennes, La percolation : un concept unificateur, La Recherche, t. 7, 1976, p. 919-927.
- [5] A. De Masi, P.A. Ferrari, S. Goldstein and W.D. Wick, An invariance principle for reversible Markov processes with application to random motions in random environments, (1985, preprint). Zbl0713.60041
- [6] P.A. Doyle and J.L. Snell, Random Walk and Electric Networks, Carus Math. Monograph, No. 22, 1984, Math. Assoc. of America. Zbl0583.60065MR920811
- [7] R. Durrett, Conditioned limit theorems for some null recurrent Markov processes, Ann. Probab., t. 6, 1978, p. 798-828. Zbl0398.60023MR503953
- [8] W. Feller, An Introduction to Probability Theory and its Applications, Vol. I, 3rd ed., John Wiley and Sons, 1968. Zbl0155.23101MR228020
- [9] D. Griffeath and T.M. Liggett, Critical phenomena for Spitzer's reversible nearest particle systems, Ann. Probab., t. 10, 1982, p. 881-895. Zbl0498.60090MR672290
- [10] T.E. Harris, The Theory of Branching Processes, Springer-Verlag and Prentice Hall, 1963. Zbl0117.13002MR163361
- [11] S. Havlin, D. Movshovitz, B. Trus and G.H. Weiss, Probability densities for the displacement of random walks on percolation clusters, J. Phys. A. Math. Gen., t. 18, 1985, L719-722.
- [12] C.C. Heyde, On large deviation probabilities in the case of attraction to a non-normal stable law, Sankhya, Ser. A, t. 30, 1968, p. 253-258. Zbl0182.22903MR240854
- [13] P. Jagers, Branching Processes with Biological Applications, John Wiley and Sons, 1950. Zbl0356.60039
- [14] H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2, Comm. Math. Phys., t. 74, 1980, p. 41-59. Zbl0441.60010MR575895
- [15] H. Kesten, Percolation Theory for Mathematicians, Birkhauser-Boston, 1982. Zbl0522.60097MR692943
- [16] H. Kesten, The incipient infinite cluster in two-dimensional percolation, to appear in Theor. Prob. Rel. Fields, 1986. Zbl0584.60098MR859839
- [17] R. Künnemann, The diffusion limit for reversible jump processes on Zd with periodic random bond conductivities, Comm. Math. Phys., t. 90, 1983, p. 27-68. Zbl0523.60097MR714611
- [18] F. Leyvraz and H.E. Stanley, To what class of fractals does the Alexander-Orbach conjecture apply?Phys. Rev. Lett., t. 51, 1983, p. 2048-2051.
- [19] M. Loeve, Probability Theory, 4th ed., Springer Verlag, 1977. Zbl0359.60001MR651017
- [20] B.B. Mandelbrot and S. Kirkpatrick, Solvable fractal family, and its possible relation to the backbone at percolation, Phys. Rev. Lett., t. 47, 1981, p. 1771-1774. MR637547
- [21] P.A. Meyer, Martingales and Stochastic Integrals I, Lecture Notes in Math, t. 284, 1972, Springer-Verlag. Zbl0239.60001MR426145
- [22] C.D. Mitescu and J. Roussenq, Diffusion on percolation structures, in Percolation Structures and Processes, Ann. Israel. Phys. Soc., t. 5, 1983, Eds. G. Deutscher, R. Zallen and J. Adler.
- [23] A.G. Pakes, Some limit theorems for the total progeny of a branching process, Adv. Appl. Prob., t. 3, 1971, p. 176-192. Zbl0218.60075MR283892
- [24] R. Rammal and G. Toulouse, Random walk on fractal structures and percolation clusters, J. Physique-Lett., t. 44, 1983, L13-22.
- [25] P.D. Seymour and D.J.A. Welsh, Percolation probabilities on the square lattice, Ann. Discrete Math., t. 3, 1978, p. 227-245. Zbl0405.60015MR494572
- [26] R.S. Slack, A branching process with mean one and possibly infinite variance, Z. Wahrsch. verw. Geb., t. 9, 1968, p. 139-145. Zbl0164.47002MR228077
- [27] J. Straley, The ant in the labyrinth: diffusion in random networks near the percolation threshold, J. Phys., Solid State Phys., t. C13, 1980, p. 2991-3002.
- [28] J. Van Den Berg and H. Kesten, Inequalities with applications to percolation and reliability, J. Appl. Prob., t. 22, 1985, p. 556-569. Zbl0571.60019MR799280
Citations in EuDML Documents
top- David Croydon, Convergence of simple random walks on random discrete trees to brownian motion on the continuum random tree
- Martin T. Barlow, Richard F. Bass, The construction of brownian motion on the Sierpinski carpet
- Martin T. Barlow, Yuval Peres, Perla Sousi, Collisions of random walks
- David Aldous, Jim Pitman, Tree-valued Markov chains derived from Galton-Watson processes
- Romain Abraham, Jean-François Delmas, Hui He, Pruning Galton–Watson trees and tree-valued Markov processes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.