Copolymer at selective interfaces and pinning potentials : weak coupling limits
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 1, page 175-200
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topPetrelis, Nicolas. "Copolymer at selective interfaces and pinning potentials : weak coupling limits." Annales de l'I.H.P. Probabilités et statistiques 45.1 (2009): 175-200. <http://eudml.org/doc/78014>.
@article{Petrelis2009,
abstract = {We consider a simple random walk of length N, denoted by (Si)i∈\{1, …, N\}, and we define (wi)i≥1 a sequence of centered i.i.d. random variables. For K∈ℕ we define ((γi−K, …, γiK))i≥1 an i.i.d sequence of random vectors. We set β∈ℝ, λ≥0 and h≥0, and transform the measure on the set of random walk trajectories with the hamiltonian λ∑i=1N(wi+h)sign(Si)+β∑j=−KK∑i=1Nγij1\{Si=j\}. This transformed path measure describes an hydrophobic(philic) copolymer interacting with a layer of width 2K around an interface between oil and water. In the present article we prove the convergence in the limit of weak coupling (when λ, h and β tend to 0) of this discrete model towards its continuous counterpart. To that aim we further develop a technique of coarse graining introduced by Bolthausen and den Hollander in Ann. Probab.25 (1997) 1334–1366. Our result shows, in particular, that the randomness of the pinning around the interface vanishes as the coupling becomes weaker.},
author = {Petrelis, Nicolas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {polymers; localization-delocalization transition; pinning; random walk; weak coupling},
language = {eng},
number = {1},
pages = {175-200},
publisher = {Gauthier-Villars},
title = {Copolymer at selective interfaces and pinning potentials : weak coupling limits},
url = {http://eudml.org/doc/78014},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Petrelis, Nicolas
TI - Copolymer at selective interfaces and pinning potentials : weak coupling limits
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 1
SP - 175
EP - 200
AB - We consider a simple random walk of length N, denoted by (Si)i∈{1, …, N}, and we define (wi)i≥1 a sequence of centered i.i.d. random variables. For K∈ℕ we define ((γi−K, …, γiK))i≥1 an i.i.d sequence of random vectors. We set β∈ℝ, λ≥0 and h≥0, and transform the measure on the set of random walk trajectories with the hamiltonian λ∑i=1N(wi+h)sign(Si)+β∑j=−KK∑i=1Nγij1{Si=j}. This transformed path measure describes an hydrophobic(philic) copolymer interacting with a layer of width 2K around an interface between oil and water. In the present article we prove the convergence in the limit of weak coupling (when λ, h and β tend to 0) of this discrete model towards its continuous counterpart. To that aim we further develop a technique of coarse graining introduced by Bolthausen and den Hollander in Ann. Probab.25 (1997) 1334–1366. Our result shows, in particular, that the randomness of the pinning around the interface vanishes as the coupling becomes weaker.
LA - eng
KW - polymers; localization-delocalization transition; pinning; random walk; weak coupling
UR - http://eudml.org/doc/78014
ER -
References
top- [1] S. Albeverio and X. Y. Zhou. Free energy and some sample path properties of a random walk with random potential. J. Statist. Phys. 83 (1996) 573–622. Zbl1081.82559MR1386352
- [2] K. S. Alexander. The effect of disorder on polymer depinning transitions. Commun. Math. Phys. 279 (2008) 117–146. Zbl1175.82034MR2377630
- [3] K. S. Alexander and V. Sidoravicius. Pinning of polymers and interfaces by random potentials. Ann. Appl. Probab. 16 (2006) 636–669. Zbl1145.82010MR2244428
- [4] T. Bodineau and G. Giacomin. On the localization transition of random copolymers near selective interfaces. J. Statist. Phys. 117 (2004) 801–818. Zbl1089.82031MR2107896
- [5] M. Biskup and F. den Hollander. A heteropolymer near a linear interface. Ann. Appl. Prob. 25 (1999) 668–876. Zbl0971.60098MR1722277
- [6] E. Bolthausen and F. den Hollander. Localization for a polymer near an interface. Ann. Probab. 25 (1997) 1334–1366. Zbl0885.60022MR1457622
- [7] F. Caravenna, G. Giacomin and M. Gubinelli. A numerical approach to copolymer at selective interfaces. J. Statsit. Phys. 122 (2006) 799–832. Zbl1149.82357MR2213950
- [8] B. Derrida, V. Hakim and J. Vannimenus. Effect of disorder on two-dimensional wetting. J. Statist. Phys. 66 (1992) 1189–1213. Zbl0900.82051MR1156401
- [9] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York (1971). Zbl0219.60003MR270403
- [10] G. Giacomin. Localization phenomena in random polymer models. Note for the course in Pisa and in the graduate school of Paris 6, 2003. http://www.proba.jussieu.fr/pageperso/giacomin/pub/publicat.html.
- [11] G. Giacomin. Random Polymer Models. Imperial College Press, London, 2007. Zbl1125.82001MR2380992
- [12] G. Giacomin and F. L. Toninelli. Estimates on path delocalization for copolymers at selective interfaces. Probab. Theory Related Fields 133 (2005) 464–482. Zbl1098.60089MR2197110
- [13] G. Giacomin and F. L. Toninelli. The localized phase of a disordered copolymer with adsorption. Alea 1 (2006) 149–180. Zbl1134.82006MR2249653
- [14] E. W. James, C. E. Soteros and S. G. Whittington. Localization of a random copolymer at an interface: an exact enumeration study. J. Phys. A 36 (2003) 11575–11584. Zbl1039.82016MR2025861
- [15] E. Janvresse, T. de la Rue and Y. Velenik. Pinning by a sparse potential. Stochastic. Process. Appl. 115 (2005) 1323–1331. Zbl1079.60077MR2152377
- [16] I. Karatzas and S. E. Shreeve. Brownian Motion and Stochastic Calculus. Springer, New York, 1991. Zbl0734.60060MR1121940
- [17] N. Pétrélis. Polymer pinning at an interface. Stoch. Proc. Appl. 116 (2006) 1600–1621. Zbl1129.82016MR2269218
- [18] N. Pétrélis. Thesis, University of Rouen, France. Online thesis, 2006.
- [19] P. Révész. Local Time and Invariance. Springer, Berlin, 1981. Zbl0456.60029MR655268
- [20] D. Revuz and M. Yor. Continuous Martingales and Brownian Motions. Wiley, New York, 1992. MR1083357
- [21] Q.-M. Shao. Strong approximation theorems for independent variables and their applications. J. Multivariate Anal. 52 107–130. Zbl0817.60027MR1325373
- [22] C. E. Soteros and S. G. Whittington. The statistical mechanics of random copolymers. J. Phys. A: Math. Gen. 37 (2004) R279–R325. Zbl1073.82015MR2097625
- [23] Y. G. Sinai. A random walk with a random potential. Theory Probab. Appl. 38 (1993) 382–385. Zbl0807.60069MR1317991
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.