A log-Sobolev type inequality for free entropy of two projections
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 1, page 239-249
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topHiai, Fumio, and Ueda, Yoshimichi. "A log-Sobolev type inequality for free entropy of two projections." Annales de l'I.H.P. Probabilités et statistiques 45.1 (2009): 239-249. <http://eudml.org/doc/78018>.
@article{Hiai2009,
abstract = {We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.},
author = {Hiai, Fumio, Ueda, Yoshimichi},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {logarithmic Sobolev inequality; free entropy; mutual free Fisher information},
language = {eng},
number = {1},
pages = {239-249},
publisher = {Gauthier-Villars},
title = {A log-Sobolev type inequality for free entropy of two projections},
url = {http://eudml.org/doc/78018},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Hiai, Fumio
AU - Ueda, Yoshimichi
TI - A log-Sobolev type inequality for free entropy of two projections
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 1
SP - 239
EP - 249
AB - We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.
LA - eng
KW - logarithmic Sobolev inequality; free entropy; mutual free Fisher information
UR - http://eudml.org/doc/78018
ER -
References
top- [1] D. Bakry and M. Emery. Diffusion hypercontractives. Séminaire Probabilités XIX 177–206. Lecture Notes in Math. 1123. Springer, Berlin, 1985. Zbl0561.60080MR889476
- [2] P. Biane. Free Brownian motion, free stochastic calculus and random matrices. In Free Probability Theory 1–19. D. V. Voiculescu (Ed.). Fields Inst. Commun. 12. Amer. Math. Soc. Providence, RI, 1997. Zbl0873.60056MR1426833
- [3] P. Biane. Logarithmic Sobolev inequalities, matrix models and free entropy. Acta Math. Sinica 19 (2003) 497–506. Zbl1040.46042MR2014030
- [4] P. Biane, M. Capitaine and A. Guionnet. Large deviation bounds for matrix Brownian motion. Invent. Math. 152 (2003) 433–459. Zbl1017.60026MR1975007
- [5] B. Collins. Product of random projections, Jacobi ensembles and universality problems arising from free probability. Probab. Theory Related Fields 133 (2005) 315–344. Zbl1100.46036MR2198015
- [6] S. Gallot, D. Hulin and J. Lafontaine. Riemannian Geometry, 2nd edition. Universitext, Springer, Berlin, 1990. Zbl0716.53001MR1083149
- [7] F. Hiai and D. Petz. The Semicircle Law, Free Random Variables and Entropy. Amer. Math. Soc., Providence, RI, 2000. Zbl0955.46037MR1746976
- [8] F. Hiai and D. Petz. Large deviations for functions of two random projection matrices. Acta Sci. Math. (Szeged) 72 (2006) 581–609. Zbl1121.15024MR2289756
- [9] F. Hiai, D. Petz and Y. Ueda. Free logarithmic Sobolev inequality on the unit circle. Canad. Math. Bull. 49 (2006) 389–406. Zbl1107.46044MR2252261
- [10] F. Hiai and Y. Ueda. Notes on microstate free entropy of projections. Publ. Res. Inst. Math. Sci. 44 (2008), 49–89. Zbl1149.46051MR2405867
- [11] R. Hunt, B. Muckenhoupt and R. Wheeden. Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Amer. Math. Soc. 176 (1973) 227–251. Zbl0262.44004MR312139
- [12] M. Ledoux. A (one-dimensional) free Brunn–Minkowski inequality. C. R. Math. Acad. Sci. Paris 340 (2005) 301–304. Zbl1064.60032MR2121895
- [13] G. I. Ol’shanskij. Unitary representations of infinite dimensional pairs (g, k) and the formalism of R. Howe. In Representation of Lie Groups and Related Topics 269–463. A. M. Vershik and D. P. Zhelobenko (Eds). Adv. Stud. Contemp. Math. 7. Gordon and Breach, New York, 1990. Zbl0724.22020MR1104279
- [14] E. B. Saff and V. Totik. Logarithmic Potentials with External Fields. Springer, Berlin, 1997. Zbl0881.31001MR1485778
- [15] C. Villani. Topics in Optimal Transportation. Amer. Math. Soc., Providence, RI, 2003. Zbl1106.90001MR1964483
- [16] D. Voiculescu. The analogues of entropy and of Fisher’s information measure in free probability theory, I. Comm. Math. Phys. 155 (1993) 71–92. Zbl0781.60006MR1228526
- [17] D. Voiculescu. The analogues of entropy and of Fisher’s information measure in free probability theory, II. Invent. Math. 118 (1994) 411–440. Zbl0820.60001MR1296352
- [18] D. Voiculescu. The analogues of entropy and of Fisher’s information measure in free probability theory, IV: Maximum entropy and freeness. In Free Probability Theory 293–302. D. V. Voiculescu (Ed.). Fields Inst. Commun. 12. Amer. Math. Soc., Providence, RI, 1997. Zbl0960.46040MR1426847
- [19] D. Voiculescu. The analogues of entropy and of Fisher’s information measure in free probability theory, V: Noncommutative Hilbert transforms. Invent. Math. 132 (1998) 189–227. Zbl0930.46053MR1618636
- [20] D. Voiculescu. The analogue of entropy and of Fisher’s information measure in free probability theory VI: Liberation and mutual free information. Adv. Math. 146 (1999) 101–166. Zbl0956.46045MR1711843
- [21] D. V. Voiculescu, K. J. Dykema and A. Nica. Free Random Variables. Amer. Math. Soc., Providence, RI, 1992. Zbl0795.46049MR1217253
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.