A log-Sobolev type inequality for free entropy of two projections

Fumio Hiai; Yoshimichi Ueda

Annales de l'I.H.P. Probabilités et statistiques (2009)

  • Volume: 45, Issue: 1, page 239-249
  • ISSN: 0246-0203

Abstract

top
We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.

How to cite

top

Hiai, Fumio, and Ueda, Yoshimichi. "A log-Sobolev type inequality for free entropy of two projections." Annales de l'I.H.P. Probabilités et statistiques 45.1 (2009): 239-249. <http://eudml.org/doc/78018>.

@article{Hiai2009,
abstract = {We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.},
author = {Hiai, Fumio, Ueda, Yoshimichi},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {logarithmic Sobolev inequality; free entropy; mutual free Fisher information},
language = {eng},
number = {1},
pages = {239-249},
publisher = {Gauthier-Villars},
title = {A log-Sobolev type inequality for free entropy of two projections},
url = {http://eudml.org/doc/78018},
volume = {45},
year = {2009},
}

TY - JOUR
AU - Hiai, Fumio
AU - Ueda, Yoshimichi
TI - A log-Sobolev type inequality for free entropy of two projections
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 1
SP - 239
EP - 249
AB - We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.
LA - eng
KW - logarithmic Sobolev inequality; free entropy; mutual free Fisher information
UR - http://eudml.org/doc/78018
ER -

References

top
  1. [1] D. Bakry and M. Emery. Diffusion hypercontractives. Séminaire Probabilités XIX 177–206. Lecture Notes in Math. 1123. Springer, Berlin, 1985. Zbl0561.60080MR889476
  2. [2] P. Biane. Free Brownian motion, free stochastic calculus and random matrices. In Free Probability Theory 1–19. D. V. Voiculescu (Ed.). Fields Inst. Commun. 12. Amer. Math. Soc. Providence, RI, 1997. Zbl0873.60056MR1426833
  3. [3] P. Biane. Logarithmic Sobolev inequalities, matrix models and free entropy. Acta Math. Sinica 19 (2003) 497–506. Zbl1040.46042MR2014030
  4. [4] P. Biane, M. Capitaine and A. Guionnet. Large deviation bounds for matrix Brownian motion. Invent. Math. 152 (2003) 433–459. Zbl1017.60026MR1975007
  5. [5] B. Collins. Product of random projections, Jacobi ensembles and universality problems arising from free probability. Probab. Theory Related Fields 133 (2005) 315–344. Zbl1100.46036MR2198015
  6. [6] S. Gallot, D. Hulin and J. Lafontaine. Riemannian Geometry, 2nd edition. Universitext, Springer, Berlin, 1990. Zbl0716.53001MR1083149
  7. [7] F. Hiai and D. Petz. The Semicircle Law, Free Random Variables and Entropy. Amer. Math. Soc., Providence, RI, 2000. Zbl0955.46037MR1746976
  8. [8] F. Hiai and D. Petz. Large deviations for functions of two random projection matrices. Acta Sci. Math. (Szeged) 72 (2006) 581–609. Zbl1121.15024MR2289756
  9. [9] F. Hiai, D. Petz and Y. Ueda. Free logarithmic Sobolev inequality on the unit circle. Canad. Math. Bull. 49 (2006) 389–406. Zbl1107.46044MR2252261
  10. [10] F. Hiai and Y. Ueda. Notes on microstate free entropy of projections. Publ. Res. Inst. Math. Sci. 44 (2008), 49–89. Zbl1149.46051MR2405867
  11. [11] R. Hunt, B. Muckenhoupt and R. Wheeden. Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Amer. Math. Soc. 176 (1973) 227–251. Zbl0262.44004MR312139
  12. [12] M. Ledoux. A (one-dimensional) free Brunn–Minkowski inequality. C. R. Math. Acad. Sci. Paris 340 (2005) 301–304. Zbl1064.60032MR2121895
  13. [13] G. I. Ol’shanskij. Unitary representations of infinite dimensional pairs (g, k) and the formalism of R. Howe. In Representation of Lie Groups and Related Topics 269–463. A. M. Vershik and D. P. Zhelobenko (Eds). Adv. Stud. Contemp. Math. 7. Gordon and Breach, New York, 1990. Zbl0724.22020MR1104279
  14. [14] E. B. Saff and V. Totik. Logarithmic Potentials with External Fields. Springer, Berlin, 1997. Zbl0881.31001MR1485778
  15. [15] C. Villani. Topics in Optimal Transportation. Amer. Math. Soc., Providence, RI, 2003. Zbl1106.90001MR1964483
  16. [16] D. Voiculescu. The analogues of entropy and of Fisher’s information measure in free probability theory, I. Comm. Math. Phys. 155 (1993) 71–92. Zbl0781.60006MR1228526
  17. [17] D. Voiculescu. The analogues of entropy and of Fisher’s information measure in free probability theory, II. Invent. Math. 118 (1994) 411–440. Zbl0820.60001MR1296352
  18. [18] D. Voiculescu. The analogues of entropy and of Fisher’s information measure in free probability theory, IV: Maximum entropy and freeness. In Free Probability Theory 293–302. D. V. Voiculescu (Ed.). Fields Inst. Commun. 12. Amer. Math. Soc., Providence, RI, 1997. Zbl0960.46040MR1426847
  19. [19] D. Voiculescu. The analogues of entropy and of Fisher’s information measure in free probability theory, V: Noncommutative Hilbert transforms. Invent. Math. 132 (1998) 189–227. Zbl0930.46053MR1618636
  20. [20] D. Voiculescu. The analogue of entropy and of Fisher’s information measure in free probability theory VI: Liberation and mutual free information. Adv. Math. 146 (1999) 101–166. Zbl0956.46045MR1711843
  21. [21] D. V. Voiculescu, K. J. Dykema and A. Nica. Free Random Variables. Amer. Math. Soc., Providence, RI, 1992. Zbl0795.46049MR1217253

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.