A probabilistic ergodic decomposition result
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 4, page 932-942
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topRaugi, Albert. "A probabilistic ergodic decomposition result." Annales de l'I.H.P. Probabilités et statistiques 45.4 (2009): 932-942. <http://eudml.org/doc/78062>.
@article{Raugi2009,
abstract = {Let $(X,\{\mathfrak \{X\}\},\mu )$ be a standard probability space. We say that a sub-σ-algebra $\{\mathfrak \{B\}\}$ of $\{\mathfrak \{X\}\}$decomposes μ in an ergodic way if any regular conditional probability $\{\}^\{\mathfrak \{B\}\}\!\!P$ with respect to $\{\mathfrak \{B\}\}$ andμ satisfies, for μ-almost every x∈X, $\forall B\in \{\mathfrak \{B\}\},\{\}^\{\mathfrak \{B\}\}\!\!P(x,B)\in \lbrace 0,1\rbrace $. In this case the equality $\mu (\cdot )=\int _\{X\}\{\}^\{\mathfrak \{B\}\}\!\!P(x,\cdot )\mu (\mathrm \{d\}x)$, gives us an integral decomposition in “$\{\mathfrak \{B\}\}$-ergodic” components. For any sub-σ-algebra $\{\mathfrak \{B\}\}$ of $\{\mathfrak \{X\}\}$, we denote by $\overline\{\mathfrak \{B\}\}$ the smallest sub-σ-algebra of $\{\mathfrak \{X\}\}$ containing $\{\mathfrak \{B\}\}$ and the collection of all setsAin $\{\mathfrak \{X\}\}$ satisfyingμ(A)=0. We say that $\{\mathfrak \{B\}\}$ isμ-complete if $\{\mathfrak \{B\}\}=\overline\{\mathfrak \{B\}\}$. Let $\lbrace \{\mathfrak \{B\}\}_\{i\}i\in I\rbrace $ be a non-empty family of sub-σ-algebras which decompose μ in an ergodic way. Suppose that, for any finite subset J of I, $\bigcap _\{i\in J\}\overline\{\{\mathfrak \{B\}\}_\{i\}\}=\overline\{\bigcap _\{i\in J\}\{\mathfrak \{B\}\}_\{i\}\}$; this assumption is satisfied in particular when theσ-algebras $\{\mathfrak \{B\}\}_\{i\}$,i∈I, are μ-complete. Then we prove that the sub-σ-algebra $\bigcap _\{i\in I\}\{\mathfrak \{B\}\}_\{i\}$ decomposesμ in an ergodic way.},
author = {Raugi, Albert},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {regular conditional probability; disintegration of probability; quasi-invariant measures; ergodic decomposition},
language = {eng},
number = {4},
pages = {932-942},
publisher = {Gauthier-Villars},
title = {A probabilistic ergodic decomposition result},
url = {http://eudml.org/doc/78062},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Raugi, Albert
TI - A probabilistic ergodic decomposition result
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 4
SP - 932
EP - 942
AB - Let $(X,{\mathfrak {X}},\mu )$ be a standard probability space. We say that a sub-σ-algebra ${\mathfrak {B}}$ of ${\mathfrak {X}}$decomposes μ in an ergodic way if any regular conditional probability ${}^{\mathfrak {B}}\!\!P$ with respect to ${\mathfrak {B}}$ andμ satisfies, for μ-almost every x∈X, $\forall B\in {\mathfrak {B}},{}^{\mathfrak {B}}\!\!P(x,B)\in \lbrace 0,1\rbrace $. In this case the equality $\mu (\cdot )=\int _{X}{}^{\mathfrak {B}}\!\!P(x,\cdot )\mu (\mathrm {d}x)$, gives us an integral decomposition in “${\mathfrak {B}}$-ergodic” components. For any sub-σ-algebra ${\mathfrak {B}}$ of ${\mathfrak {X}}$, we denote by $\overline{\mathfrak {B}}$ the smallest sub-σ-algebra of ${\mathfrak {X}}$ containing ${\mathfrak {B}}$ and the collection of all setsAin ${\mathfrak {X}}$ satisfyingμ(A)=0. We say that ${\mathfrak {B}}$ isμ-complete if ${\mathfrak {B}}=\overline{\mathfrak {B}}$. Let $\lbrace {\mathfrak {B}}_{i}i\in I\rbrace $ be a non-empty family of sub-σ-algebras which decompose μ in an ergodic way. Suppose that, for any finite subset J of I, $\bigcap _{i\in J}\overline{{\mathfrak {B}}_{i}}=\overline{\bigcap _{i\in J}{\mathfrak {B}}_{i}}$; this assumption is satisfied in particular when theσ-algebras ${\mathfrak {B}}_{i}$,i∈I, are μ-complete. Then we prove that the sub-σ-algebra $\bigcap _{i\in I}{\mathfrak {B}}_{i}$ decomposesμ in an ergodic way.
LA - eng
KW - regular conditional probability; disintegration of probability; quasi-invariant measures; ergodic decomposition
UR - http://eudml.org/doc/78062
ER -
References
top- [1] D. L. Burkholder and Y. S. Chow. Iterates of conditional expectations operators. Proc. Amer. Math. Soc. 12 (1961) 490–495. Zbl0106.33201MR142144
- [2] J.-P. Conze and A. Raugi. On the ergodic decomposition for a cocycle. Preprint, 2007. (pdf version “ReducErg.pdf” in personal university site.) MR2539552
- [3] G. Greschonig and K. Schmidt. Ergodic decomposition of quasi-invariant probability measures. Colloq. Math. 84/85 (2000) 495–514. Zbl0972.37003MR1784210
- [4] J. Kerstan and A. Wakolbinger. Ergodic decomposition of probability laws. Z. Wahrsch. Verw. Gebiete 56 (1981) no. 3 399–414. Zbl0444.60004MR621119
- [5] J. Neveu. Bases Mathématiques du Calcul des Probabilités. Masson, Paris, 1964. Zbl0137.11203MR198504
- [6] K. Schmidt. A probabilistic proof of ergodic decomposition. Sankhyā Ser. A 40 (1978) no. 1 10–18. Zbl0412.60004MR545459
- [7] H. Shimomura. Ergodic decomposition of quasi-invariant measures. Publ. Res. Inst. Math. Sci. 14 (1978) no. 2 359–381. Zbl0391.60004MR509194
- [8] H. Shimomura. Remark to the ergodic decomposition of measures. Publ. Res. Inst. Math. Sci. 26 (1990) no. 5 861–865. Zbl0716.28005MR1082320
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.