Linearization and normal form of the Navier-Stokes equations with potential forces

C. Foias; J. C. Saut

Annales de l'I.H.P. Analyse non linéaire (1987)

  • Volume: 4, Issue: 1, page 1-47
  • ISSN: 0294-1449

How to cite

top

Foias, C., and Saut, J. C.. "Linearization and normal form of the Navier-Stokes equations with potential forces." Annales de l'I.H.P. Analyse non linéaire 4.1 (1987): 1-47. <http://eudml.org/doc/78124>.

@article{Foias1987,
author = {Foias, C., Saut, J. C.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear spectral manifolds; nonresonant spectrum; normalization theory; incompressible Navier-Stokes equations; potential body forces; global asymptotic expansion; normal form; Frechet space; resonances in the spectrum; Stokes operator; Burgers equation; Cole-Hopf transform},
language = {eng},
number = {1},
pages = {1-47},
publisher = {Gauthier-Villars},
title = {Linearization and normal form of the Navier-Stokes equations with potential forces},
url = {http://eudml.org/doc/78124},
volume = {4},
year = {1987},
}

TY - JOUR
AU - Foias, C.
AU - Saut, J. C.
TI - Linearization and normal form of the Navier-Stokes equations with potential forces
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1987
PB - Gauthier-Villars
VL - 4
IS - 1
SP - 1
EP - 47
LA - eng
KW - nonlinear spectral manifolds; nonresonant spectrum; normalization theory; incompressible Navier-Stokes equations; potential body forces; global asymptotic expansion; normal form; Frechet space; resonances in the spectrum; Stokes operator; Burgers equation; Cole-Hopf transform
UR - http://eudml.org/doc/78124
ER -

References

top
  1. [1] V. Arnold, Geometrical methods in the theory of ordinary differential equations, Springer-Verlag. New York, 1983. Zbl0507.34003MR695786
  2. [2] M.S. Berger, P.T. Church, J.G. Timourian, Integrability of nonlinear differential equations via functional analysis, Proc. Symp. Pure Math., t. 45, 1986, Part I, p. 117- 123. Zbl0592.58038MR843553
  3. [3] N. Bourbaki, Variétés différentiables et analytiques, Fascicule de résultats, §1-7, Hermann, Paris, 1967. Zbl0171.22004MR219078
  4. [4] L. Cattabriga, Su un problema al contorno relativo al sistema di equazione di Stokes,Rend. Mat. Sem. Univ. Padova, t. 31, 1961, p. 308-340. Zbl0116.18002MR138894
  5. [5] P. Constantin, C. Foias, Global Lyapunov exponents, Kaplan Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm. Pure Appl. Math., t. XXXVII, 1985, p. 1-28. Zbl0582.35092MR768102
  6. [6] C. Foias, Solutions statistiques des équations de Navier-Stokes, Cours au Collège de France, 1974. 
  7. [7] C. Foias, J.C. Saut, Asymptotic behavior, as t → + ∞ of solutions of Navier —Stokes equations and nonlinear spectral manifolds, Indiana Univ. Math. J., t. 33, 3, 1984, p. 459-471. Zbl0565.35087MR740960
  8. [8] C. Foias, J.C. Saut, On the smoothness of the nonlinear spectral manifolds of Navier —Stokes equations, Indiana Univ. Math. J., t. 33, 6, 1984, p. 911-926. Zbl0572.35081MR763949
  9. [9] C. Foias, J.C. Saut, Transformation fonctionnelle linéarisant les équations de Navier— Stokes, C. R. Acad. Sci. Paris, Série I, Math., t. 295, 1982, p. 325-327. Zbl0545.35074MR679744
  10. [10] C. Foias, J.C. Saut, Remarks on the spectrum of some self-adjoint operators, in preparation. Zbl0572.35081
  11. [11] C. Gardner, J. Greene, M. Kruskal, R. Miura, Korteweg de Vries equations, VI: Methods for exact solution, Comm. Pure Appl. Math., t. 27, 1974, p. 97-133. Zbl0291.35012MR336122
  12. [12] J.M. Ghidaglia, Long time behavior of solutions of abstract inequalities. Application to thermohydraulic and M. H. D. equations. J. Diff. Eq., t. 61, 2, 1986, p. 268-294. Zbl0549.35102MR823404
  13. [13] C. Guillope, Remarques à propos du comportement lorsque t → ∞, des solutions des équations de Navier-Stokes associées à une force nulle, Bull. Soc. Math. France, t. 111, 1983, p. 151-180. Zbl0554.35098MR734218
  14. [14] E. Hopf, The partial differential equation ut + uux = μuxx, Comm. Pure Appl. Math., t. 3, 1950, p. 201-230. Zbl0039.10403
  15. [15] G. Minea, Remarques sur l'unicité de la solution stationnaire d'une équation de type Navier-Stokes, Revue Roumaine Math. Pures Appl., t. 21, 1976, p. 1071-1075. Zbl0365.76027MR433059
  16. [16] N.V. Nikolenko, Complete integrability of the nonlinear Schrödinger equation, Soviet Math. Dokl., t. 17, 2, 1976, p. 398-402. Zbl0346.35039MR418158
  17. [17] N.V. Nikolenko, On the complete integrability of the nonlinear Schrödinger equation, Funct. Anal. and Appl., t. 10, 3, 1976, p. 209-220. Zbl0345.35027MR418158
  18. [18] N.V. Nikolenko, Invariant asymptotically stable tori of the perturbed KdV equation, Russian Math. Surveys, t. 35, 5, 1980, p. 139-207. Zbl0467.35077MR595143
  19. [19] A. Scott, F. Chu, D. McLaughlin, The soliton: a new concept in applied science, Proc. IEEE, t. 61, 1973, p. 1443-1483. MR358045
  20. [20] V.A. Solonnikov, On general boundary value problems for elliptic systems in the sense of Douglas-Nirenberg, I, Izv. Akad. Nauk SSSR, Ser. Mat., t. 28, 1964, p. 665- 706. Zbl0175.11703MR211070
  21. [21] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland, Amsterdam, 1979. Zbl0426.35003
  22. [22] R. Temam, Navier-Stokes equations and nonlinear functional analysis, NSF/CMBS Regional Conferences Series in Applied Mathematics, SIAM, Philadelphia, 1983. Zbl0522.35002MR764933
  23. [23] G. Whitham, Linear and nonlinear waves, John Wiley, New York, 1974. Zbl0373.76001MR483954
  24. [24] V.I. Yudovich, I.I. Vorovich, Stationnary flows of incompressible viscous fluids, Math. Sborn., t. 53, 1961, p. 393-428. 
  25. [25] E. Zehnder, Siegel's linearization theorem in infinite dimension, Manuscripta Math., t. 23, 1978, p. 363-371. Zbl0374.47037MR501144
  26. [26] H. Poincaré, Thèse Paris, 1879; reprinted in Œuvres de Henri Poincaré, Vol. I, Gauthier-Villars, Paris, 1928. 
  27. [27] H. Dulac, Solutions d'un système d'équations différentielles dans le voisinage des valeurs singulières, Bull. Soc. Math. France, t. 40, 1912, p. 324-383. Zbl43.0391.01MR1504694JFM43.0391.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.