Linearization and normal form of the Navier-Stokes equations with potential forces
Annales de l'I.H.P. Analyse non linéaire (1987)
- Volume: 4, Issue: 1, page 1-47
- ISSN: 0294-1449
Access Full Article
topHow to cite
topFoias, C., and Saut, J. C.. "Linearization and normal form of the Navier-Stokes equations with potential forces." Annales de l'I.H.P. Analyse non linéaire 4.1 (1987): 1-47. <http://eudml.org/doc/78124>.
@article{Foias1987,
author = {Foias, C., Saut, J. C.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear spectral manifolds; nonresonant spectrum; normalization theory; incompressible Navier-Stokes equations; potential body forces; global asymptotic expansion; normal form; Frechet space; resonances in the spectrum; Stokes operator; Burgers equation; Cole-Hopf transform},
language = {eng},
number = {1},
pages = {1-47},
publisher = {Gauthier-Villars},
title = {Linearization and normal form of the Navier-Stokes equations with potential forces},
url = {http://eudml.org/doc/78124},
volume = {4},
year = {1987},
}
TY - JOUR
AU - Foias, C.
AU - Saut, J. C.
TI - Linearization and normal form of the Navier-Stokes equations with potential forces
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1987
PB - Gauthier-Villars
VL - 4
IS - 1
SP - 1
EP - 47
LA - eng
KW - nonlinear spectral manifolds; nonresonant spectrum; normalization theory; incompressible Navier-Stokes equations; potential body forces; global asymptotic expansion; normal form; Frechet space; resonances in the spectrum; Stokes operator; Burgers equation; Cole-Hopf transform
UR - http://eudml.org/doc/78124
ER -
References
top- [1] V. Arnold, Geometrical methods in the theory of ordinary differential equations, Springer-Verlag. New York, 1983. Zbl0507.34003MR695786
- [2] M.S. Berger, P.T. Church, J.G. Timourian, Integrability of nonlinear differential equations via functional analysis, Proc. Symp. Pure Math., t. 45, 1986, Part I, p. 117- 123. Zbl0592.58038MR843553
- [3] N. Bourbaki, Variétés différentiables et analytiques, Fascicule de résultats, §1-7, Hermann, Paris, 1967. Zbl0171.22004MR219078
- [4] L. Cattabriga, Su un problema al contorno relativo al sistema di equazione di Stokes,Rend. Mat. Sem. Univ. Padova, t. 31, 1961, p. 308-340. Zbl0116.18002MR138894
- [5] P. Constantin, C. Foias, Global Lyapunov exponents, Kaplan Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm. Pure Appl. Math., t. XXXVII, 1985, p. 1-28. Zbl0582.35092MR768102
- [6] C. Foias, Solutions statistiques des équations de Navier-Stokes, Cours au Collège de France, 1974.
- [7] C. Foias, J.C. Saut, Asymptotic behavior, as t → + ∞ of solutions of Navier —Stokes equations and nonlinear spectral manifolds, Indiana Univ. Math. J., t. 33, 3, 1984, p. 459-471. Zbl0565.35087MR740960
- [8] C. Foias, J.C. Saut, On the smoothness of the nonlinear spectral manifolds of Navier —Stokes equations, Indiana Univ. Math. J., t. 33, 6, 1984, p. 911-926. Zbl0572.35081MR763949
- [9] C. Foias, J.C. Saut, Transformation fonctionnelle linéarisant les équations de Navier— Stokes, C. R. Acad. Sci. Paris, Série I, Math., t. 295, 1982, p. 325-327. Zbl0545.35074MR679744
- [10] C. Foias, J.C. Saut, Remarks on the spectrum of some self-adjoint operators, in preparation. Zbl0572.35081
- [11] C. Gardner, J. Greene, M. Kruskal, R. Miura, Korteweg de Vries equations, VI: Methods for exact solution, Comm. Pure Appl. Math., t. 27, 1974, p. 97-133. Zbl0291.35012MR336122
- [12] J.M. Ghidaglia, Long time behavior of solutions of abstract inequalities. Application to thermohydraulic and M. H. D. equations. J. Diff. Eq., t. 61, 2, 1986, p. 268-294. Zbl0549.35102MR823404
- [13] C. Guillope, Remarques à propos du comportement lorsque t → ∞, des solutions des équations de Navier-Stokes associées à une force nulle, Bull. Soc. Math. France, t. 111, 1983, p. 151-180. Zbl0554.35098MR734218
- [14] E. Hopf, The partial differential equation ut + uux = μuxx, Comm. Pure Appl. Math., t. 3, 1950, p. 201-230. Zbl0039.10403
- [15] G. Minea, Remarques sur l'unicité de la solution stationnaire d'une équation de type Navier-Stokes, Revue Roumaine Math. Pures Appl., t. 21, 1976, p. 1071-1075. Zbl0365.76027MR433059
- [16] N.V. Nikolenko, Complete integrability of the nonlinear Schrödinger equation, Soviet Math. Dokl., t. 17, 2, 1976, p. 398-402. Zbl0346.35039MR418158
- [17] N.V. Nikolenko, On the complete integrability of the nonlinear Schrödinger equation, Funct. Anal. and Appl., t. 10, 3, 1976, p. 209-220. Zbl0345.35027MR418158
- [18] N.V. Nikolenko, Invariant asymptotically stable tori of the perturbed KdV equation, Russian Math. Surveys, t. 35, 5, 1980, p. 139-207. Zbl0467.35077MR595143
- [19] A. Scott, F. Chu, D. McLaughlin, The soliton: a new concept in applied science, Proc. IEEE, t. 61, 1973, p. 1443-1483. MR358045
- [20] V.A. Solonnikov, On general boundary value problems for elliptic systems in the sense of Douglas-Nirenberg, I, Izv. Akad. Nauk SSSR, Ser. Mat., t. 28, 1964, p. 665- 706. Zbl0175.11703MR211070
- [21] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland, Amsterdam, 1979. Zbl0426.35003
- [22] R. Temam, Navier-Stokes equations and nonlinear functional analysis, NSF/CMBS Regional Conferences Series in Applied Mathematics, SIAM, Philadelphia, 1983. Zbl0522.35002MR764933
- [23] G. Whitham, Linear and nonlinear waves, John Wiley, New York, 1974. Zbl0373.76001MR483954
- [24] V.I. Yudovich, I.I. Vorovich, Stationnary flows of incompressible viscous fluids, Math. Sborn., t. 53, 1961, p. 393-428.
- [25] E. Zehnder, Siegel's linearization theorem in infinite dimension, Manuscripta Math., t. 23, 1978, p. 363-371. Zbl0374.47037MR501144
- [26] H. Poincaré, Thèse Paris, 1879; reprinted in Œuvres de Henri Poincaré, Vol. I, Gauthier-Villars, Paris, 1928.
- [27] H. Dulac, Solutions d'un système d'équations différentielles dans le voisinage des valeurs singulières, Bull. Soc. Math. France, t. 40, 1912, p. 324-383. Zbl43.0391.01MR1504694JFM43.0391.01
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.