Galerkin averaging method and Poincaré normal form for some quasilinear PDEs
- [1] Dipartimento di Matematica Via Saldini 50 20133 Milano, Italy
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 4, page 669-702
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [Bam03a] D. Bambusi, An averaging theorem for quasilinear Hamiltonian PDEs, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (2003), 685–712. Zbl1031.37056MR2015427
- [Bam03b] D. Bambusi, Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys. 234 (2003), 253–285. Zbl1032.37051MR1962462
- [Bam03c] D. Bambusi, Birkhoff normal form for some quasilinear Hamiltonian PDEs, preprint, 2003. MR2227839
- [BCP02] D. Bambusi, A. Carati and A. Ponno, The nonlinear Schrödinger equation as a resonant normal form, Discrete Contin. Dyn. Syst. Ser. B 2 (2002), 109–128. Zbl1068.37056MR1877043
- [BG03] D. Bambusi and B. Grébert, Forme normale pour NLS en dimension quelconque, C. R. Math. Acad. Sci. Paris 337 (2003), 409–414. Zbl1030.35143MR2015085
- [BG04] D. Bambusi and B. Grébert, Birkhoff normal form for PDEs with tame modulus, Duke Math. J. (2004), to appear. Zbl1110.37057MR2272975
- [BN98] D. Bambusi and N. N. Nekhoroshev, A property of exponential stability in nonlinear wave equations near the fundamental linear mode, Phys. D 122 (1998), 73–104. Zbl0937.35010MR1650123
- [Bou96] J. Bourgain, Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal. 6 (1996), 201–230. Zbl0872.35007MR1384610
- [Cra96] W. Craig, Birkhoff normal forms for water waves, In: “Mathematical problems in the theory of water waves” (Luminy, 1995), Vol. 200, Contemp. Math., Amer. Math. Soc., Providence, RI, 1996, 57–74. Zbl0953.76009MR1410500
- [CS93] W. Craig and C. SulemNumerical simulation of gravity waves, J. Comput. Phys. 108 (1993), 73–83. Zbl0778.76072MR1239970
- [CSS97] W. Craig, U. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 615–667. Zbl0892.76008MR1470784
- [CW95] W. Craig and P. A. Worfolk, An integrable normal form for water waves in infinite depth, Phys. D 84 (1995), 513–531. Zbl0883.35092MR1336546
- [DZ94] A. I. Dʼyachenko and V. E. Zakharov, Is free-surface hydrodynamics an integrable system? Phys. Lett. A 190 (1994), 144–148. Zbl0961.76511MR1283779
- [FS87] C. Foias and J.-C. Saut, Linearization and normal form of the Navier-Stokes equations with potential forces, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 1–47. Zbl0635.35075MR877990
- [FS91] C. Foias and J.-C. Saut, Asymptotic integration of Navier-Stokes equations with potential forces. I, Indiana Univ. Math. J. 40 (1991), 305–320. Zbl0739.35066MR1101233
- [GP88] A. Giorgilli and A. Posilicano, Estimates for normal forms of differential equations near an equilibrium point, Z. Angew. Math. Phys. 39 (1988), 713–732. Zbl0685.58028MR963640
- [Kat75] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, In: “Spectral Theory and Differential Equations” (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Lecture Notes in Math., Vol. 448, Springer, Berlin, 1975, 25–70. Zbl0315.35077MR407477
- [Kro89] M. S. Krol, On a Galerkin-averaging method for weakly nonlinear wave equations, Math. Methods Appl. Sci. 11 (1989), 649–664. Zbl0707.35095MR1011811
- [Mat01] K. Matthies, Time-averaging under fast periodic forcing of parabolic partial differential equations: exponential estimates, J. Differential Equations 174 (2001), 133–180. Zbl1023.35055MR1844527
- [MS03] K. Matthies and A. Scheel, Exponential averaging for Hamiltonian evolution equations, Trans. Amer. Math. Soc. 355 (2003), 747–773. Zbl1008.37043MR1932724
- [Nik86] N. V. Nikolenko, The method of Poincaré normal forms in problems of integrability of equations of evolution type, Uspekhi Mat. Nauk 41 (1986), 109–152, 263. Zbl0632.35026MR878327
- [Pal96] H. Pals, The Galerkin-averaging method for the Klein-Gordon equation in two space dimensions, Nonlinear Anal. 27 (1996), 841–856. Zbl0861.35101MR1402170
- [PB05] A. Ponno and D. Bambusi, Korteweg-de Vries equation and energy sharing in Fermi-Pasta-Ulam, Chaos 15 (2005), 015107, 5. Zbl1080.37073MR2133458
- [Sha85] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math. 38 (1985), 685–696. Zbl0597.35101MR803256
- [SV87] A. C. J. Stroucken and F. Verhulst, The Galerkin-averaging method for nonlinear, undamped continuous systems, Math. Methods Appl. Sci. 9 (1987), 520–549. Zbl0638.35057MR1200364
- [SW00] G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model In: “International Conference on Differential Equations”, Vol. 1, 2 (Berlin, 1999), World Sci. Publishing, River Edge, NJ, 2000, 390–404. Zbl0970.35126MR1870156
- [Zak68] V. E. ZakharovStability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 2 (1968), 190–194.
- [Zeh78] E. Zehnder, C. L. Siegel’s linearization theorem in infinite dimensions, Manuscripta Math. 23 (1977/78), 363–371. Zbl0374.47037MR501144