Implications of rank one convexity

J. Sivaloganathan

Annales de l'I.H.P. Analyse non linéaire (1988)

  • Volume: 5, Issue: 2, page 99-118
  • ISSN: 0294-1449

How to cite

top

Sivaloganathan, J.. "Implications of rank one convexity." Annales de l'I.H.P. Analyse non linéaire 5.2 (1988): 99-118. <http://eudml.org/doc/78150>.

@article{Sivaloganathan1988,
author = {Sivaloganathan, J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {rank one convexity; one parameter family of equilibria},
language = {eng},
number = {2},
pages = {99-118},
publisher = {Gauthier-Villars},
title = {Implications of rank one convexity},
url = {http://eudml.org/doc/78150},
volume = {5},
year = {1988},
}

TY - JOUR
AU - Sivaloganathan, J.
TI - Implications of rank one convexity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 2
SP - 99
EP - 118
LA - eng
KW - rank one convexity; one parameter family of equilibria
UR - http://eudml.org/doc/78150
ER -

References

top
  1. [1] J.M. Ball, Constitutive Inequalities and Existence Theorems in Nonlinear Elastostatics, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 1, R. J. KNOPS Ed., 1977, pp. 187-241, Pitman, London. Zbl0377.73043MR478899
  2. [2] J.M. Ball, Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Rat. Mech. Anal., Vol. 63, 1977, pp. 337-403. Zbl0368.73040MR475169
  3. [3] J.M. Ball, Does Rank-One Convexity Imply Quasiconvexity? Proceedings of Workshop on Metastability and Partial Differential Equations, Institute for Mathematics and its Applications, University of Minnesota, May 1985. Zbl0613.49014
  4. [4] J.M. Ball, J.C. Currie and P.J. Olver, Null Lagrangians, Weak Continuity and Variational Problems of Arbitrary Order, J. Funct. Anal., 41, 1981, pp. 135-174. Zbl0459.35020MR615159
  5. [5] J.M. Ball and J.E. Marsden, Quasiconvexity at the Boundary, Positivity of the Second Variation and Elastic Stability, Arch. Rat. Mech. Anal., Vol. 86, 1984, pp. 251- 277. Zbl0552.73006MR751509
  6. [6] L. Cesari, Optimization-Theory and Applications, Springer-Verlag, New York, 1983. Zbl0506.49001MR688142
  7. [7] D.G.B. Edelen, The Null Set of the Euler-Lagrange Operator, Arch. Rat. Mech. Anal., 11, 1962, pp. 117-121. Zbl0125.33002MR150623
  8. [8] J.L. Ericksen, Nilpotent Energies in Liquid Crystal Theory, Arch. Rat. Mech. Anal., 10, 1962, pp. 189-196. Zbl0109.23002MR169513
  9. [9] R.J. Knops and C.A. Stuart, Quasiconvexity and Uniqueness of Equilibrium Solutions in Nonlinear Elasticity, Arch. Rat. Mech. Anal., Vol. 86, 1984, pp. 233- 249. Zbl0589.73017MR751508
  10. [10] A.W. Landers, Invariant Multiple Integrals in the Calculus of Variations, in Contributions to the Calculus of Variations, 1938–1941, pp. 175-208, Univ. Chicago Press, Chicago, 1942. Zbl0063.03441MR6821
  11. [11] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966. Zbl0142.38701
  12. [12] P.J. Olver, Conservation Laws and Null Divergences, Math. Proc. Cambridge Phil. Soc., 94, 1983, pp. 529-540. Zbl0556.35021MR720804
  13. [13] P.J. Olver and J. Sivaloganathan, The Structure of Null Lagrangians, to appear in Nonlinearity. Zbl0662.49016MR937008
  14. [14] H. Rund, The Hamilton-Jacobi Theory in the Calculus of Variations, Van Nostrand, London, 1966. Zbl0141.10602MR230189
  15. [15] J. Sivaloganathan, A Field Theory Approach to Stability of Equilibria in Radial Elasticity, Math. Proc. Camb. Phil. Soc., 99, 1986, pp. 589-604. Zbl0612.73013MR830370
  16. [16] C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechnics, in Handbuch der Physik, Vol. III/3, S. FLUGGE Ed., Springer, Berlin, 1965. MR193816
  17. [17] H. Weyl, Geodesic Fields, Ann. of Math., 37, 1935, pp. 607-629. Zbl0013.12002JFM61.0554.04

NotesEmbed ?

top

You must be logged in to post comments.