Implications of rank one convexity

J. Sivaloganathan

Annales de l'I.H.P. Analyse non linéaire (1988)

  • Volume: 5, Issue: 2, page 99-118
  • ISSN: 0294-1449

How to cite

top

Sivaloganathan, J.. "Implications of rank one convexity." Annales de l'I.H.P. Analyse non linéaire 5.2 (1988): 99-118. <http://eudml.org/doc/78150>.

@article{Sivaloganathan1988,
author = {Sivaloganathan, J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {rank one convexity; one parameter family of equilibria},
language = {eng},
number = {2},
pages = {99-118},
publisher = {Gauthier-Villars},
title = {Implications of rank one convexity},
url = {http://eudml.org/doc/78150},
volume = {5},
year = {1988},
}

TY - JOUR
AU - Sivaloganathan, J.
TI - Implications of rank one convexity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 2
SP - 99
EP - 118
LA - eng
KW - rank one convexity; one parameter family of equilibria
UR - http://eudml.org/doc/78150
ER -

References

top
  1. [1] J.M. Ball, Constitutive Inequalities and Existence Theorems in Nonlinear Elastostatics, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 1, R. J. KNOPS Ed., 1977, pp. 187-241, Pitman, London. Zbl0377.73043MR478899
  2. [2] J.M. Ball, Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Rat. Mech. Anal., Vol. 63, 1977, pp. 337-403. Zbl0368.73040MR475169
  3. [3] J.M. Ball, Does Rank-One Convexity Imply Quasiconvexity? Proceedings of Workshop on Metastability and Partial Differential Equations, Institute for Mathematics and its Applications, University of Minnesota, May 1985. Zbl0613.49014
  4. [4] J.M. Ball, J.C. Currie and P.J. Olver, Null Lagrangians, Weak Continuity and Variational Problems of Arbitrary Order, J. Funct. Anal., 41, 1981, pp. 135-174. Zbl0459.35020MR615159
  5. [5] J.M. Ball and J.E. Marsden, Quasiconvexity at the Boundary, Positivity of the Second Variation and Elastic Stability, Arch. Rat. Mech. Anal., Vol. 86, 1984, pp. 251- 277. Zbl0552.73006MR751509
  6. [6] L. Cesari, Optimization-Theory and Applications, Springer-Verlag, New York, 1983. Zbl0506.49001MR688142
  7. [7] D.G.B. Edelen, The Null Set of the Euler-Lagrange Operator, Arch. Rat. Mech. Anal., 11, 1962, pp. 117-121. Zbl0125.33002MR150623
  8. [8] J.L. Ericksen, Nilpotent Energies in Liquid Crystal Theory, Arch. Rat. Mech. Anal., 10, 1962, pp. 189-196. Zbl0109.23002MR169513
  9. [9] R.J. Knops and C.A. Stuart, Quasiconvexity and Uniqueness of Equilibrium Solutions in Nonlinear Elasticity, Arch. Rat. Mech. Anal., Vol. 86, 1984, pp. 233- 249. Zbl0589.73017MR751508
  10. [10] A.W. Landers, Invariant Multiple Integrals in the Calculus of Variations, in Contributions to the Calculus of Variations, 1938–1941, pp. 175-208, Univ. Chicago Press, Chicago, 1942. Zbl0063.03441MR6821
  11. [11] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966. Zbl0142.38701
  12. [12] P.J. Olver, Conservation Laws and Null Divergences, Math. Proc. Cambridge Phil. Soc., 94, 1983, pp. 529-540. Zbl0556.35021MR720804
  13. [13] P.J. Olver and J. Sivaloganathan, The Structure of Null Lagrangians, to appear in Nonlinearity. Zbl0662.49016MR937008
  14. [14] H. Rund, The Hamilton-Jacobi Theory in the Calculus of Variations, Van Nostrand, London, 1966. Zbl0141.10602MR230189
  15. [15] J. Sivaloganathan, A Field Theory Approach to Stability of Equilibria in Radial Elasticity, Math. Proc. Camb. Phil. Soc., 99, 1986, pp. 589-604. Zbl0612.73013MR830370
  16. [16] C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechnics, in Handbuch der Physik, Vol. III/3, S. FLUGGE Ed., Springer, Berlin, 1965. MR193816
  17. [17] H. Weyl, Geodesic Fields, Ann. of Math., 37, 1935, pp. 607-629. Zbl0013.12002JFM61.0554.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.