Well behaved asymptotical convex functions

A. A. Auslender; J. P. Crouzeix

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: S6, page 101-121
  • ISSN: 0294-1449

How to cite

top

Auslender, A. A., and Crouzeix, J. P.. "Well behaved asymptotical convex functions." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 101-121. <http://eudml.org/doc/78190>.

@article{Auslender1989,
author = {Auslender, A. A., Crouzeix, J. P.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {proper closed convex functions},
language = {eng},
pages = {101-121},
publisher = {Gauthier-Villars},
title = {Well behaved asymptotical convex functions},
url = {http://eudml.org/doc/78190},
volume = {S6},
year = {1989},
}

TY - JOUR
AU - Auslender, A. A.
AU - Crouzeix, J. P.
TI - Well behaved asymptotical convex functions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 101
EP - 121
LA - eng
KW - proper closed convex functions
UR - http://eudml.org/doc/78190
ER -

References

top
  1. [1] H.P. Aubin and A. Cellina, Differential Inclusions, Springer Verlag,Berlin- Heidelberg (1981). Zbl0538.34007
  2. [2] A. Auslender and J.-P. Crouzeix, "Global regularity theorems",to appear in Math. of Oper. Research. Zbl0655.90059MR942616
  3. [3] A. Brøndstedt and R.T. Rockafellar, "On the subdifferentiability of convex functions", Proceedings of the American Mathematical Society, 16 (1965) pp. 605-611. Zbl0141.11801MR178103
  4. [4] Y. Censor and A. Lent, "Optimization of "Log x" entropy over linear equality constraints", S.I.A.M. Journal Control & Optimization, Vol. 25 (1987) pp. 921-933. Zbl0631.90050
  5. [5] Debreu "Least concave utility functions", Journal of Math. Economics, Vol.3 (1976 pp. 121-129. Zbl0361.90007MR411563
  6. [6] Kannai "Concavifiability of convex preferences", Journal of Math. Economics, Vol.4 (1977) pp. 1-56. Zbl0361.90008MR459523
  7. [7] P.J. Laurent, Approximation et optimisation, Hermann (1972). Zbl0238.90058MR467080
  8. [8] R.T. Rockafellar "Monotone operators and the proximal point algorithm", S.I.A.M. Journal on Control and Optimization14 (1976) pp. 877-898. Zbl0358.90053MR410483
  9. [9] R.T. Rockafellar, Convex Analysis, Princeton University Press - Princeton, N.J.1970 . Zbl0193.18401MR274683

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.