Analyse des problèmes de forme par la dérivation des minimax

M.-C. Delfour; J.-P. Zolésio

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: S6, page 211-227
  • ISSN: 0294-1449

How to cite

top

Delfour, M.-C., and Zolésio, J.-P.. "Analyse des problèmes de forme par la dérivation des minimax." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 211-227. <http://eudml.org/doc/78196>.

@article{Delfour1989,
author = {Delfour, M.-C., Zolésio, J.-P.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {shape gradient; shape optimization; Shape Sensitivity Analysis},
language = {fre},
pages = {211-227},
publisher = {Gauthier-Villars},
title = {Analyse des problèmes de forme par la dérivation des minimax},
url = {http://eudml.org/doc/78196},
volume = {S6},
year = {1989},
}

TY - JOUR
AU - Delfour, M.-C.
AU - Zolésio, J.-P.
TI - Analyse des problèmes de forme par la dérivation des minimax
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 211
EP - 227
LA - fre
KW - shape gradient; shape optimization; Shape Sensitivity Analysis
UR - http://eudml.org/doc/78196
ER -

References

top
  1. J.P. Aubin [1], L'analyse non linéaire et ses motivations économiques, Masson, Paris, New York, 1984. Zbl0551.90001MR754997
  2. N.V. Banichuk [1], Optimization of the Shapes of Elastic Bodies, Nauka, Moscow, 1980 (Engl. Transl. 1984). Zbl0649.73040
  3. J. Cea [1], Conception optimale ou identification de formes. Calcul rapide de la dérivée directionnelle de la fonction coût, R.A.I.R.O.20 (1986), 371-402. Zbl0604.49003MR862783
  4. [2], Problems of Shape Optimal Design, in "Optimization of Distributed Parameter Structures", Vol. Il, pp. 1005-1048, Sijthoff and Noordhoff, Alphen aan den Rijn, Netherlands 1980. Zbl0517.73096
  5. [3], Numerical Methods of Shape Optimal Design, in "Optimization of distributed parameter structures", E.J. Haug and J. Céa, eds.,pp. 1049-1087, Sijthoff and Noordhoff, Alphen aan den Rijn, Netherlands 1980. Zbl0517.73095
  6. R. Correa and A. Seeger [1], Directional derivatives of a minimax function, Nonlinear Analysis, Theory, Methods and Applications9 (1985), 13-22. Zbl0556.49007MR776359
  7. M.C. Delfour and J.P. Zolesio[ 1], Dérivation d'un Min Max et application à la dérivationpar rapport au contrôle d'une observation non différentiable de l'état, C.R. Acad. Sc. Paris302, Sér. I (1986), 571-574. Zbl0589.49006MR844159
  8. [2],, Differentiability of a Min Max and Application to Optimal Control and Design Problems, Part I and II, in "Control Problems for Systems Described as Partial Differential Equations and Applications", I. Lasiecka and R. Triggiani, eds., part I pp. 204-219, part II pp. 220-229, Springer Verlag, New-York, 1987. Zbl0633.49005MR910518
  9. [3], Shape Sensitivity Analysis via Min Max Differentiability, SIAM J. on Control and Optim., à paraître. Zbl0654.49010
  10. [4], Further developments in shape sensitivity analysis via a penalization method, in "Boundary Control and Boundary Variations", J.P. Zolésio, ed., Springer Verlag, New York, à paraître. 
  11. [5], Shape sensitivity analysis via a penalization method, Annali di Matematica Pura i Applicata, à paraître. Zbl0667.49004
  12. K. Dems and Z. Oz [1], Variational approach by means of adjoint systems to structural optimization and sensitivity analysis, Part 2. Structure shape variations, Int. J. of Solids and Structures20 (1984), 527-552. Zbl0577.73093MR763092
  13. V.F. Dem'yanov [1], Differentiability of a Maximin function. I, USSR Comp. Math. and Math.Phys.8 (1968), 1-15 (transl from Z. Vychisl. Mat. i Mat. Fiz.8 (1968), 1186-1195). Zbl0218.90050
  14. I. Ekeland and R. Temam [1], Analyse convexe et problèmes variationnels, Dunod,Gauthier -Villars, Paris, Bruxelles, Montréal, 1974. Zbl0281.49001MR463993
  15. R.H. Gallagher and O.C. Zienkiewicz [1], Optimum structural design theory and applications, John Wiley and Sons, 1972; Springer Verlag, Berlin1973. Zbl0291.73049MR1602135
  16. E.J. Haug [1], A review of Distributed Parameter Structural Optimization Literature, in"Optimization of Distributed Parameter Structures", Vol. I, pp. 3-74, (cf. Haug and Céa [1 ]). MR690959
  17. E.J. Haug and J.S. Arora [1], Applied Optimal Design, Wiley-Interscience, New York,1979. 
  18. E.J. Haug and J. Cea [1], Optimization of Distributed Parameter Structures, Vol. I and II,Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, Rockville, Maryland, USA, 1981. Zbl0511.00034MR690958
  19. E.J. Haug , K.K. Choi and V. Komkov[1], Design Sensitivity Analysis of Structural Systems, Academic Press, New York, 1986. Zbl0618.73106MR860040
  20. A. Myslinski and J. Sokolowski [1], Nondifferentiable optimization problems for elliptic problems, SIAM J. Control and Optimization23 (1984), 632-648. Zbl0571.49010MR791892
  21. O. Pironneau [1], Optimal Design for Elliptic Systems, Springer Verlag, New York, 1984. Zbl0534.49001MR725856
  22. W. Prager [1], Introduction to Structural Optimization, Courses and Lectures: International Centre for Mechanical Sciences, Udine, No 212, Springer Verlag, Vienna, 1974. Zbl0325.73001MR441063
  23. G.I.N. Rozvany [1], Optimal Design of Flexural Systems, Pergamon Press, New York, 1976. 
  24. A. Sawczuk and Z. Oz [1], Optimization in Structural Design, Springer Verlag, New York, 1975. Zbl0309.00033
  25. J. Sokolowski [1], Optimal control in coefficients of boundary value problems with unilateral constraints, Bull. Pol. Acad. Sc. Tech. Sc.31 (1983), 71-81. Zbl0544.49005
  26. J. Sokolowski and J.P. Zolesio [1], Dérivée par rapport au domaine de la solution d'un problème unilatéral, C.R. Acad. Sc. Paris301 (1985), Sér. I, pp. 103-106. Zbl0605.35028MR799603
  27. [2]. Shape sensitivity analysis of an elasto-plastic torsion problem, Bull. Pol. Acad. Sc. Tech. Sc.33 (1985), 579-586. Zbl0595.73098
  28. A. Souissi [1], Quelques problèmes d'optimisation de formes en hydrodynamique, Thèse de Ph.D., Université Laval, Québec (Québec), Canada, décembre 1986. 
  29. J.P. Zolesio [1], Identification de domaine, Thèse de doctorat d'état, Nice, 1979. 
  30. [2], Semi-Derivatives of Repeated Eigenvalues, in "Optimization of Distributed Parameter Structures", Vol. II, J. Haug and J. Cea, eds, pp. 1457-1473, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, Rockville, Maryland, USA, 1981. Zbl0518.73086
  31. [3], An optimal design procedure for optimal control support, in "Convex Analysis and its Applications", A. Auslender, ed., pp.207-219, Springer Verlag, Berlin, Heidelberg ,New-York, 1977. MR513446

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.