Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces

Francesca de Marchis

Bollettino dell'Unione Matematica Italiana (2011)

  • Volume: 4, Issue: 2, page 245-257
  • ISSN: 0392-4041

Abstract

top
ρ belongs to ( 8 π , 4 π 2 ) we show under some extra assumptions that, as conjectured in [9], the functional admits at least three saddle points other than a local minimum.

How to cite

top

de Marchis, Francesca. "Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces." Bollettino dell'Unione Matematica Italiana 4.2 (2011): 245-257. <http://eudml.org/doc/290721>.

@article{deMarchis2011,
abstract = {$\rho$ belongs to $(8\pi, 4\pi^\{2\})$ we show under some extra assumptions that, as conjectured in [9], the functional admits at least three saddle points other than a local minimum.},
author = {de Marchis, Francesca},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {245-257},
publisher = {Unione Matematica Italiana},
title = {Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces},
url = {http://eudml.org/doc/290721},
volume = {4},
year = {2011},
}

TY - JOUR
AU - de Marchis, Francesca
TI - Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/6//
PB - Unione Matematica Italiana
VL - 4
IS - 2
SP - 245
EP - 257
AB - $\rho$ belongs to $(8\pi, 4\pi^{2})$ we show under some extra assumptions that, as conjectured in [9], the functional admits at least three saddle points other than a local minimum.
LA - eng
UR - http://eudml.org/doc/290721
ER -

References

top
  1. CAGLIOTI, E. P. - LIONS, P. L. - MARCHIORO, C. - PULVIRENTI, M., A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys., 143 (1995), 229-260. Zbl0840.76002MR1362165
  2. CHANG, K. C., Infinite dimensional Morse theory and multiple solution problems, PNLDE6, Birkhäuser, Boston, 1993. Zbl0779.58005MR1196690DOI10.1007/978-1-4612-0385-8
  3. CHANG, S. Y. A. - GURSKY, M. J. - YANG, P. C., The scalar curvature equation on 2- and 3-spheres, Calc. Var. and Partial Diff. Eq., 1 (1993), 205-229. MR1261723DOI10.1007/BF01191617
  4. CHANG, S. Y. A. - YANG, P. C., Prescribing Gaussian curvature on 𝕊 2 , Acta Math., 159 (1987), 215-259. Zbl0636.53053MR908146DOI10.1007/BF02392560
  5. CHEN, W. - LI, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. Zbl0768.35025MR1121147DOI10.1215/S0012-7094-91-06325-8
  6. CHEN, W. - LI, C., Prescribing Gaussian curvatures on surfaces with conical singularities, J. Geom. Anal., 1-4 (1991), 359-372. MR1129348DOI10.1007/BF02921311
  7. CHEN, C. C. - LIN, C. S., Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727. Zbl1032.58010MR2001443DOI10.1002/cpa.10107
  8. CLARK, D. C., A variant of the Lusternick-Schnirelman theory, Indiana J. Math., 22 (1972), 65-74. Zbl0228.58006MR296777DOI10.1512/iumj.1972.22.22008
  9. DE MARCHIS, F., Multiplicity result for a scalar field equation on compact surfaces, Comm. Partial Differential Equations, 33 (2008), 2208-2224. Zbl1165.35020MR2475336DOI10.1080/03605300802523446
  10. DE MARCHIS, F., Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192. Zbl1211.58011MR2671126DOI10.1016/j.jfa.2010.07.003
  11. DING, W. - JOST, J. - LI, J. - WANG, G., Existence result for mean field equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 16 (1999), 653-666. Zbl0937.35055MR1712560DOI10.1016/S0294-1449(99)80031-6
  12. DING, W. - JOST, J. - LI, J. - WANG, G., The differential equation Δ u = 8 π - 8 π h e u on a compact Riemann surface, Asian J. Math., 1 (1997), 230-248. Zbl0955.58010MR1491984DOI10.4310/AJM.1997.v1.n2.a3
  13. DJADLI, Z., Existence result for the mean field problem on Riemann surfaces of all genuses, Commun. Contemp. Math., 10 (2008), 205-220. Zbl1151.53035MR2409366DOI10.1142/S0219199708002776
  14. DJADLI, Z. - MALCHIODI, A., Existence of conformal metrics with constant Q-curvature, Ann. of Math., 168 (2008), 813-858. Zbl1186.53050MR2456884DOI10.4007/annals.2008.168.813
  15. FOURNIER, G. - WILLEM, M., Multiple solutions of the forced double pendulum equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 6 (1989), 259-281. Zbl0683.70022MR1019117DOI10.1016/S0294-1449(17)30025-2
  16. KIESSLING, M. K. H., Statistical mechanics approach to some problems in conformal geometry. Statistical mechanics: from rigorous results to applications, Phys. A, 279 (2000), 353-368. MR1797146DOI10.1016/S0378-4371(99)00515-4
  17. KAZDAN, J. L. - WARNER, F. W., Curvature functions for compact 2-manifolds, Ann. of Math., 99 (1974), 14-47. Zbl0273.53034MR343205DOI10.2307/1971012
  18. LI, Y. Y. - SHAFRIR, I., Blow-up analysis for solutions of - Δ u = V e u in dimension two, Ind. Univ. Math. J., 43 (1994), 1225-1270. Zbl0842.35011MR1322618DOI10.1512/iumj.1994.43.43054
  19. LI, Y. Y., Harnack type inequality: the methods of moving planes, Comm. Math. Phys., 200 (1999), 421-444. Zbl0928.35057MR1673972DOI10.1007/s002200050536
  20. LIN, C. S., Topological degree for mean field equations on S 2 , Duke Math. J., 104 (2000), 501-536. Zbl0964.35038MR1781481DOI10.1215/S0012-7094-00-10437-1
  21. LUCIA, M., A blowing-up branch of solutions for a mean field equation, Calc. Var., 26 (2006), 313-330. Zbl1136.35368MR2232208DOI10.1007/s00526-006-0007-3
  22. LUCIA, M., A deformation lemma with an application with a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007), 113-138. Zbl1135.58005MR2363657
  23. MALCHIODI, A., Morse theory and a scalar field equation on compact surfaces, Adv. Diff. Eq., 13 (2008), 1109-1129. Zbl1175.53052MR2483132
  24. NOLASCO, M. - TARANTELLO, G., On a sharp type-Sobolev inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145 (1998), 165-195. Zbl0980.46022MR1664542DOI10.1007/s002050050127
  25. SPANIER, E. H., Algebraic topology, Springer-Verlag, New-York, 1966. MR210112
  26. STRUWE, M. - TARANTELLO, G., On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital., 8 (1998), 109-121. Zbl0912.58046MR1619043
  27. TARANTELLO, G., Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (1996), 3769-3796. Zbl0863.58081MR1400816DOI10.1063/1.531601
  28. YANG, Y., Solitons in field theory and nonlinear analysis, Springer, 2001. Zbl0982.35003MR1838682DOI10.1007/978-1-4757-6548-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.