Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces
Bollettino dell'Unione Matematica Italiana (2011)
- Volume: 4, Issue: 2, page 245-257
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topde Marchis, Francesca. "Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces." Bollettino dell'Unione Matematica Italiana 4.2 (2011): 245-257. <http://eudml.org/doc/290721>.
@article{deMarchis2011,
abstract = {$\rho$ belongs to $(8\pi, 4\pi^\{2\})$ we show under some extra assumptions that, as conjectured in [9], the functional admits at least three saddle points other than a local minimum.},
author = {de Marchis, Francesca},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {245-257},
publisher = {Unione Matematica Italiana},
title = {Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces},
url = {http://eudml.org/doc/290721},
volume = {4},
year = {2011},
}
TY - JOUR
AU - de Marchis, Francesca
TI - Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/6//
PB - Unione Matematica Italiana
VL - 4
IS - 2
SP - 245
EP - 257
AB - $\rho$ belongs to $(8\pi, 4\pi^{2})$ we show under some extra assumptions that, as conjectured in [9], the functional admits at least three saddle points other than a local minimum.
LA - eng
UR - http://eudml.org/doc/290721
ER -
References
top- CAGLIOTI, E. P. - LIONS, P. L. - MARCHIORO, C. - PULVIRENTI, M., A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys., 143 (1995), 229-260. Zbl0840.76002MR1362165
- CHANG, K. C., Infinite dimensional Morse theory and multiple solution problems, PNLDE6, Birkhäuser, Boston, 1993. Zbl0779.58005MR1196690DOI10.1007/978-1-4612-0385-8
- CHANG, S. Y. A. - GURSKY, M. J. - YANG, P. C., The scalar curvature equation on 2- and 3-spheres, Calc. Var. and Partial Diff. Eq., 1 (1993), 205-229. MR1261723DOI10.1007/BF01191617
- CHANG, S. Y. A. - YANG, P. C., Prescribing Gaussian curvature on , Acta Math., 159 (1987), 215-259. Zbl0636.53053MR908146DOI10.1007/BF02392560
- CHEN, W. - LI, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. Zbl0768.35025MR1121147DOI10.1215/S0012-7094-91-06325-8
- CHEN, W. - LI, C., Prescribing Gaussian curvatures on surfaces with conical singularities, J. Geom. Anal., 1-4 (1991), 359-372. MR1129348DOI10.1007/BF02921311
- CHEN, C. C. - LIN, C. S., Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727. Zbl1032.58010MR2001443DOI10.1002/cpa.10107
- CLARK, D. C., A variant of the Lusternick-Schnirelman theory, Indiana J. Math., 22 (1972), 65-74. Zbl0228.58006MR296777DOI10.1512/iumj.1972.22.22008
- DE MARCHIS, F., Multiplicity result for a scalar field equation on compact surfaces, Comm. Partial Differential Equations, 33 (2008), 2208-2224. Zbl1165.35020MR2475336DOI10.1080/03605300802523446
- DE MARCHIS, F., Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192. Zbl1211.58011MR2671126DOI10.1016/j.jfa.2010.07.003
- DING, W. - JOST, J. - LI, J. - WANG, G., Existence result for mean field equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 16 (1999), 653-666. Zbl0937.35055MR1712560DOI10.1016/S0294-1449(99)80031-6
- DING, W. - JOST, J. - LI, J. - WANG, G., The differential equation on a compact Riemann surface, Asian J. Math., 1 (1997), 230-248. Zbl0955.58010MR1491984DOI10.4310/AJM.1997.v1.n2.a3
- DJADLI, Z., Existence result for the mean field problem on Riemann surfaces of all genuses, Commun. Contemp. Math., 10 (2008), 205-220. Zbl1151.53035MR2409366DOI10.1142/S0219199708002776
- DJADLI, Z. - MALCHIODI, A., Existence of conformal metrics with constant Q-curvature, Ann. of Math., 168 (2008), 813-858. Zbl1186.53050MR2456884DOI10.4007/annals.2008.168.813
- FOURNIER, G. - WILLEM, M., Multiple solutions of the forced double pendulum equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 6 (1989), 259-281. Zbl0683.70022MR1019117DOI10.1016/S0294-1449(17)30025-2
- KIESSLING, M. K. H., Statistical mechanics approach to some problems in conformal geometry. Statistical mechanics: from rigorous results to applications, Phys. A, 279 (2000), 353-368. MR1797146DOI10.1016/S0378-4371(99)00515-4
- KAZDAN, J. L. - WARNER, F. W., Curvature functions for compact 2-manifolds, Ann. of Math., 99 (1974), 14-47. Zbl0273.53034MR343205DOI10.2307/1971012
- LI, Y. Y. - SHAFRIR, I., Blow-up analysis for solutions of in dimension two, Ind. Univ. Math. J., 43 (1994), 1225-1270. Zbl0842.35011MR1322618DOI10.1512/iumj.1994.43.43054
- LI, Y. Y., Harnack type inequality: the methods of moving planes, Comm. Math. Phys., 200 (1999), 421-444. Zbl0928.35057MR1673972DOI10.1007/s002200050536
- LIN, C. S., Topological degree for mean field equations on , Duke Math. J., 104 (2000), 501-536. Zbl0964.35038MR1781481DOI10.1215/S0012-7094-00-10437-1
- LUCIA, M., A blowing-up branch of solutions for a mean field equation, Calc. Var., 26 (2006), 313-330. Zbl1136.35368MR2232208DOI10.1007/s00526-006-0007-3
- LUCIA, M., A deformation lemma with an application with a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007), 113-138. Zbl1135.58005MR2363657
- MALCHIODI, A., Morse theory and a scalar field equation on compact surfaces, Adv. Diff. Eq., 13 (2008), 1109-1129. Zbl1175.53052MR2483132
- NOLASCO, M. - TARANTELLO, G., On a sharp type-Sobolev inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145 (1998), 165-195. Zbl0980.46022MR1664542DOI10.1007/s002050050127
- SPANIER, E. H., Algebraic topology, Springer-Verlag, New-York, 1966. MR210112
- STRUWE, M. - TARANTELLO, G., On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital., 8 (1998), 109-121. Zbl0912.58046MR1619043
- TARANTELLO, G., Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (1996), 3769-3796. Zbl0863.58081MR1400816DOI10.1063/1.531601
- YANG, Y., Solitons in field theory and nonlinear analysis, Springer, 2001. Zbl0982.35003MR1838682DOI10.1007/978-1-4757-6548-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.