On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation

A. B. Kurzhanski; T. F. Filippova

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: S6, page 339-363
  • ISSN: 0294-1449

How to cite

top

Kurzhanski, A. B., and Filippova, T. F.. "On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 339-363. <http://eudml.org/doc/78202>.

@article{Kurzhanski1989,
author = {Kurzhanski, A. B., Filippova, T. F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {viability; funnel equation; evolution equation; differential inclusion; directional derivative},
language = {eng},
pages = {339-363},
publisher = {Gauthier-Villars},
title = {On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation},
url = {http://eudml.org/doc/78202},
volume = {S6},
year = {1989},
}

TY - JOUR
AU - Kurzhanski, A. B.
AU - Filippova, T. F.
TI - On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 339
EP - 363
LA - eng
KW - viability; funnel equation; evolution equation; differential inclusion; directional derivative
UR - http://eudml.org/doc/78202
ER -

References

top
  1. 1. Krasovski, N.N., The Control of a Dynamic System, Moscow, "Nauka", 1986 (in Russian). MR820965
  2. 2. Kurzhanski, A.B., On the analytical description of the set of viable trajectories of a differential system, Dokl. Acad. Nauk SSSR, 1986, 287, 5, pp. 1047-1050 (in Russian). Zbl0613.34010MR839699
  3. 3. Kurzhanski, A.B., Filippova, T.F.On the description of the set of viable trajectories of a differential inclusion, Dokl. Acad. Nauk SSSR, 1986, 289, 1, pp. 38-41 (in Russian). Zbl0622.34011MR852286
  4. 4. Kurzhanski, A.B., Filippova, T.F.On the description of the set of viable trajectories of a control system, Different. Uravn., 1987, No. 8, pp. 1303-1315 (in Russian). Zbl0637.49018MR909576
  5. 5. Aubin, J.-P., Cellina A., Differential inclusions, Heidelberg, Springer-Verlag, 1984. Zbl0538.34007MR755330
  6. 6. Kurzhanski, A.B., Control and observation under uncertainty, Moscow, "Nauka", 1977 (in Russian). 
  7. 7. Castaing, C., Valadier, M., Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580, Springer-Verlag, 1977. Zbl0346.46038MR467310
  8. 8. Aubin, J.-P., Ekeland I., Applied nonlinear analysis, New York, Academic Press, 1984. Zbl0641.47066MR749753
  9. 9. Panasyuk, A.I., Panasyuk V.I., Asymptotic magistral optimization of control systems, Minsk, "Nauka i Tekhika", 1986 (in Russian). Zbl0613.49003MR854866
  10. 10. Tolstonogov, A.A., Differential inclusions in Banach space, Novosibirsk, "Nauka", 1986 (in Russian). Zbl0689.34014
  11. 11. Blagodatskikh, V.I., Filippov A.F., Differential inclusions and optimal control, Trudy Matem. Inst. Akad. Nauk SSSR, 169, Moscow, "Nauka", 1985 (in Russian). Zbl0595.49026MR836575
  12. 12. Demyanov, V.F., Lemaréchal C., Zowe J., Approximation to a set-valued mapping, I: a proposal, Appl. Math. Optim., 1986, 14, 3, p. 203-214. Zbl0619.49005MR867718
  13. 13. Joffe, A.D., Tihomirov, V.M., The theory of extremal problems, Moscow, "Nauka", 1979. Zbl0407.90051
  14. 14. Kurzhanski, A.B. and Osipov, Yu.S.On optimal control under state constraints. Prikladnaia Matematika i Mehanika (Applied Mathematics and Mechanics) vol. 33, No. 4, 1969. 
  15. 15. Rockafellar, R.T., State Constraints in Convex Problems of Bolza. SIAM J. Control. vol. 10, No. 4, 1972. Zbl0224.49003MR324505
  16. 16. Demianov, V.F., Minimax: directional differentiation. LeningradUniversity Press, 1974. MR445825

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.