Un résultat de non-existence de solution positive pour une équation elliptique
Annales de l'I.H.P. Analyse non linéaire (1990)
- Volume: 7, Issue: 2, page 91-96
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] H. Brézis et L. Nirenberg, Communication personnelle.
- [2] Gidas, Ni et Nirenberg, Symmetry and Related Properties Via the Maximum Principle, Comm. Math. Phys., vol. 68, 1979; p. 209-243. Zbl0425.35020MR544879
- [3] K. Mcleod et J. Serrin, Uniqueness of Positive Radial Solution of Δu+f(u)=0 in Rn, Arch. Rat. Mech. Anal., vol. 99, 1987, p. 115-146. Zbl0667.35023MR886933
- [4] F. Merle, Sur la non-existence de solutions positives d'équations elliptiques surlinéaires (à paraître). Zbl0696.35062
- [5] M. Ramaswamy, On the Global Set of Solutions to a Nonlinear ODE-Theoretical and Numerical Description, J. Diff. Eq., vol. 65, 1986, p. 1-48. Zbl0597.34014MR859471
- [6] M. Ramaswamy et P.N. Srikanth, Symmetry Breaking for a Class of Semilinear Elliptics Problems, Trans. of A.M.S. (à paraître). Zbl0644.35010
- [7] J. Smoller et A. Wasserman, Existence Uniqueness and Nondegeneracy of Positive Solutions of Semilinear Elliptic Equations, Comm. Math. Phys., vol. 95, 1984, p. 129- 159. Zbl0582.35046MR760329
- [8] J. Serrin, A Symmetry Problem in Potential Theory, Arch. Rat. Mech. Anal., vol. 43, 1971, p. 304-318. Zbl0222.31007MR333220