Un principe de concentration-compacité pour les suites de surfaces Riemanniennes

M. Troyanov

Annales de l'I.H.P. Analyse non linéaire (1991)

  • Volume: 8, Issue: 5, page 419-441
  • ISSN: 0294-1449

How to cite

top

Troyanov, M.. "Un principe de concentration-compacité pour les suites de surfaces Riemanniennes." Annales de l'I.H.P. Analyse non linéaire 8.5 (1991): 419-441. <http://eudml.org/doc/78259>.

@article{Troyanov1991,
author = {Troyanov, M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {sequence of metrics; level of concentration; Schwarz' lemma},
language = {fre},
number = {5},
pages = {419-441},
publisher = {Gauthier-Villars},
title = {Un principe de concentration-compacité pour les suites de surfaces Riemanniennes},
url = {http://eudml.org/doc/78259},
volume = {8},
year = {1991},
}

TY - JOUR
AU - Troyanov, M.
TI - Un principe de concentration-compacité pour les suites de surfaces Riemanniennes
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 5
SP - 419
EP - 441
LA - fre
KW - sequence of metrics; level of concentration; Schwarz' lemma
UR - http://eudml.org/doc/78259
ER -

References

top
  1. [A] L.V. Ahlfors, An Extension of Schwarz' Lemma, Trans. Am. Math. Soc., vol. 43, 1938, p. 359-364. Zbl0018.41002MR1501949JFM64.0315.04
  2. [BC] A. Bahri et J.M. Coron, The Scalar Curvature Problem on the Standard 3- Dimensional Sphere, preprint, 1989. 
  3. [BP] C. Bavard et P. Pansu, Sur l'espace des surfaces à courbure et aire bornées, Ann. Inst. Fourier, vol. 38, 1988, p. 175-203. Zbl0636.53054MR949005
  4. [CY] S.A. Chang et P. Yang, Conformal Deformation of Metrics on S2, J. Differential Geom., vol. 27, 1988, p. 259-296. Zbl0649.53022MR925123
  5. [F] H. Federer, Geometric Measure Theory, Springer Verlag, 1969. Zbl0176.00801MR257325
  6. [G] M. Gromov, Pseudo-Holomorphic Curves in Symplectic Manifolds, Inventiones Math., vol. 82, 1985, p. 307-347. Zbl0592.53025
  7. [GLP] M. Gromov, J. Lafontaine et P. Pansu, Structures métriques pour les variétés riemanniennes, Cedic/Fernand Nathan, Paris, 1981. Zbl0509.53034MR682063
  8. [GT] D. Gilbarg et N.S. Trudinger, Elliptic Partial Differential Equation of Second Order, Springer Verlag, New York, 1977. Zbl0361.35003MR473443
  9. [GW] R. Greene et H.H. Wu, LipschitzConvergence of Riemannian Manifolds, Pacific J. Math., vol. 131, 1988, p. 119-141. Zbl0646.53038MR917868
  10. [H1] A. Huber, On the Isoperimetric Inequality on Surfaces of Variable Gaussian Curvature, Ann. Math., vol. 60, 1954, p. 237-247. Zbl0056.15801MR65946
  11. [H2] A. Huber, Zum potentialtheoritischen Aspekt der Alexandrowschen Flächentheorie, Comm. Math. Helv., vol. 34, 1960, p. 99-126. Zbl0105.16104MR115147
  12. [L] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations, Riv. mat. Ibero-americana, vol. 1, 1985, p. 145-201. Zbl0704.49005MR834360
  13. [P] S. Peters, Convergence of Riemannian Manifolds, Compositio Math., vol. 62, 1987, p. 3-7. Zbl0618.53036MR892147
  14. [R1] Y. Rechetnjack, Coordonnées isothermes sur les variétés à courbure bornée 1, (en russe), Sib. Math. J., vol. 1, 1960, p. 88-116. 
  15. [R2] Y. Rechetnjack, Coordonnées isothermes sur les variétés à courbure bornée 2, (en russe), Sib. Math. J., vol. 1, 1960, p. 248-276. 
  16. [SU] J. Sacks et K. Uhlenbeck, The Existence of Minimal Immersions of 2-Spheres, Ann. Math., vol. 113, 1981, p. 1-24. Zbl0462.58014MR604040
  17. [U] K. Uhlenbeck, Connections with Lp Bounds on Curvarture, Commun. Math. Phys., vol. 83, 1982, p. 31-42. Zbl0499.58019MR648356

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.