Régularité de la solution d'un problème variationnel

R. Tahraoui

Annales de l'I.H.P. Analyse non linéaire (1992)

  • Volume: 9, Issue: 1, page 51-99
  • ISSN: 0294-1449

How to cite

top

Tahraoui, R.. "Régularité de la solution d'un problème variationnel." Annales de l'I.H.P. Analyse non linéaire 9.1 (1992): 51-99. <http://eudml.org/doc/78272>.

@article{Tahraoui1992,
author = {Tahraoui, R.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {regularity of variational problems; nonconvex variational problems},
language = {fre},
number = {1},
pages = {51-99},
publisher = {Gauthier-Villars},
title = {Régularité de la solution d'un problème variationnel},
url = {http://eudml.org/doc/78272},
volume = {9},
year = {1992},
}

TY - JOUR
AU - Tahraoui, R.
TI - Régularité de la solution d'un problème variationnel
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1992
PB - Gauthier-Villars
VL - 9
IS - 1
SP - 51
EP - 99
LA - fre
KW - regularity of variational problems; nonconvex variational problems
UR - http://eudml.org/doc/78272
ER -

References

top
  1. [1] J.L. Ericksen, Equilibrium of Bars, J. Elasticity, vol. 5, 1975, p. 191-201. Zbl0324.73067MR471528
  2. [2] J.L. Knowles, On Finite Anti-Plane Shear for Incompressible Elastic Materials, J. Austral. Math. Soc., Serie B 19, 1976, p. 400-415. Zbl0363.73045MR475116
  3. [3] R.L. Fosdick et R.D. James, The Elastica and the Problem of the Pure Bending for Non Convex Stored Energy Function, J. Elasticity, vol. 11, 1981, p. 165-186. Zbl0481.73018MR614373
  4. [4] J.M. Ball, Convexity Conditions and Existence Theorems in Non Linear Elasticity, Arch. Rational mech. Anal., vol. 63, 1977, p. 337-403. Zbl0368.73040MR475169
  5. [5] P.G. Ciarlet, Mathematical Elasticity, Publication du Laboratoire d'Analyse Numérique, Université Paris-VI, Part I, n°A86007. 
  6. [6] G. Aubert et R. Tahraoui, Théorèmes d'existence pour des problèmes du calcul des variations du type Inf ∫L0 f (x, u') dx et Inf ∫L0 f(x, u, u') dx, J. Differential Equations, vol. 33, 1979, p. 1-15. Zbl0404.49001MR540812
  7. [7] I. Ekeland, Discontinuité de champs hamiltoniens et existence de solutions optimales en calcul des variations, Inst. Hautes Études Sci. Publi. Math., vol. 47, 1977, p. 5-32. Zbl0447.49015MR493584
  8. [8] G. Aubert et R. Tahraoui, Théorèmes d'existence en optimisation non convexe, Appl. Anal., vol. 18, 1984, p. 75-100. Zbl0522.49002MR762866
  9. [9] P. Marcellini, A Relation Between Existence of Minima for Non Convex Integrals and Uniqueness for Non Strictly Convex Integrals of the Calculus of Variations, Proceeding of Congress on Mathematical Theories of Optimization; Lecture Notes in Mathematics, n° 979, p. 216-231 (Berlin : Springer, 1983). Zbl0505.49009MR713812
  10. [10] J.P. Raymond, Théorème d'existence pour des problèmes variationnels non convexes, Proceeding of the Royal Society ofEdinburgh, vol. 107 A, 1987, p. 43-64. Zbl0628.49006MR918892
  11. [11] E. Mascolo et R. Schianchi, Existence Theorems in the Calculus of Variations, J. Differential Equations, vol. 67, n° 2, 1987. Zbl0522.49001MR879692
  12. [12] E. Mascolo et R. Schianchi, Existence Theorems for Non Convex Problems, J. Math. Pures Appl., vol. 62, 1983, p. 349-359. Zbl0522.49001MR718948
  13. [13] R. Tahraoui, Théorèmes d'existence en calcul des variations et applications à l'élasticité non linéaire, Proceeding of the Royal Society ofEdinburgh, vol. 109 A, 1988, p. 51- 78. Zbl0681.49004MR952329
  14. [14] P. Hartman et G. Stampacchia, On Some Non-Linear Elliptic Differential-functional Equations, Acta Mathematica, vol. 115, 1966, p. 271-310. Zbl0142.38102MR206537
  15. [15] J.P. Aubin et I. Ikeland, AppliedNonlinear Analysis, Edit John Wiley and Sons, New York, 1984. Zbl0641.47066MR749753
  16. [16] G. Aubert et R. Tahraoui, Sur quelques résultats d'existence en optimisation non convexe, C. R. Acad. Sci. Paris, t. 297, série I, 1983, p. 287-290. Zbl0534.49004MR734570
  17. [17] R.T. Rockafellar, Convex Analysis, Princeton University Press. Zbl0932.90001MR1451876
  18. [18] G. Stampacchia, On Some Regular Multiple Integral Problems in the Calculus of Variations, C.P.A.M., vol. XVI, 1963, p. 383-421. Zbl0138.36903MR155209
  19. [19] A. Visintin, Strong Convergence Results Related to Strict Convexity, Com. in partial differential equations, vol. 9, (5), 1984, p. 439-466. Zbl0545.49019MR741216
  20. [20] R. Tahraoui, Régularité de la solution d'un problème variationnel et application, C. R. Acad. Sci. Paris, t. 305, série I, 1987, p. 327-330. Zbl0639.49003MR909558
  21. [21] G. Aubert et R. Tahraoui, Sur quelques résultats d'existence en optimisation non convexe, C. R. Acad. Sci. Paris, t. 297, série I, 1983, p. 287-290. Zbl0534.49004MR734570
  22. [22] R. Tahraoui, Travail en préparation. 
  23. [23] I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels, Dunod, Paris, 1974. Zbl0281.49001MR463993
  24. [24] P. Marcellini, Alcune osservazioni sull' esistenza del minimo di integrali del calcolo delle variazioni senza ipotesi di convessità, Rendiconti Mat., t. 13, 1980, p. 271-281. Zbl0454.49015
  25. [25] P. Marcellini, Regularity of Minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Rat. Mech. An., vol. 105, n° 3, 1989, p. 267-284. Zbl0667.49032MR969900
  26. [26] P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math., vol. 51, 1985, p. 1-28. Zbl0573.49010MR788671
  27. [27] R. Tahraoui, Régularité de la solution d'un problème variationnel, Cahiers du Ceremade, n° 9006. Zbl0757.49015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.