The Dirichlet-problem for harmonic maps from the disk into a lorentzian warped product

Carlo Greco

Annales de l'I.H.P. Analyse non linéaire (1993)

  • Volume: 10, Issue: 2, page 239-252
  • ISSN: 0294-1449

How to cite

top

Greco, Carlo. "The Dirichlet-problem for harmonic maps from the disk into a lorentzian warped product." Annales de l'I.H.P. Analyse non linéaire 10.2 (1993): 239-252. <http://eudml.org/doc/78302>.

@article{Greco1993,
author = {Greco, Carlo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Dirichlet problem; critical point theory; harmonic maps; Riemannian manifold; Lorentzian manifold},
language = {eng},
number = {2},
pages = {239-252},
publisher = {Gauthier-Villars},
title = {The Dirichlet-problem for harmonic maps from the disk into a lorentzian warped product},
url = {http://eudml.org/doc/78302},
volume = {10},
year = {1993},
}

TY - JOUR
AU - Greco, Carlo
TI - The Dirichlet-problem for harmonic maps from the disk into a lorentzian warped product
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 2
SP - 239
EP - 252
LA - eng
KW - Dirichlet problem; critical point theory; harmonic maps; Riemannian manifold; Lorentzian manifold
UR - http://eudml.org/doc/78302
ER -

References

top
  1. [1] V. Benci and J.M. Coron, The Dirichlet problem for harmonic maps from the disk into the euclidean n-sphere, Ann. Inst. H. Poincaré, Vol. 2, 1985, pp. 119-141. Zbl0597.35022MR794003
  2. [2] V. Benci, D. Fortunato and F. Giannoni, On the existence of multiple geodesics in static space-times, Ann. Inst. H. Poincaré, Vol. 8, 1991, pp. 79-102. Zbl0716.53057MR1094653
  3. [3] H. Brezis and J.M. Coron, Large solutions for harmonic maps in two dimension, Comm. Math. Phys., Vol. 92, 1983, pp. 203-215. Zbl0532.58006MR728866
  4. [4] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., Vol. 10, 1978, pp. 1-68. Zbl0401.58003MR495450
  5. [5] J. Eells and J.H. Sampson, Harmonic maps of riemannian manifold, Amer. J. Math., Vol. 86, 1964, pp. 109-160. Zbl0122.40102MR164306
  6. [6] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer, New York, 1977. Zbl0361.35003MR473443
  7. [7] C. Greco, Multiple periodic trajectories on stationary space-times, Ann. Mat. Pura e Appl., Vol. 162, 1992, pp. 337-348. Zbl0777.53066MR1199661
  8. [8] C.H. Gu, On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space, Comm. Pure Appl. Math., Vol. 33, 1980, pp. 727-737. Zbl0475.58005MR596432
  9. [9] O.A. Ladyzenskaja and N.N. Ural'ceva, Équations aux dérivées partielles de type elliptique, Dunod, Paris, 1968. Zbl0164.13001MR239273
  10. [10] Ma Li, On equivariant harmonic maps into a Lorentz manifold, 1990, preprint. Zbl0716.58008MR1075666
  11. [11] C.B. Morrey, Multiple integrals in the calculus of variations, Springer, New York, 1966. Zbl0142.38701MR202511
  12. [12] B. O'Neill, Semi-riemannian geometry, With applications to relativity, Academic Press, London, 1983. Zbl0531.53051MR719023
  13. [13] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. Math., Vol. 113, 1981, pp. 1-24. Zbl0462.58014MR604040
  14. [14] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geometry, Vol. 18, 1983, pp. 253-268. Zbl0547.58020MR710054
  15. [15] J. Shatah, Weak solutions and development of singularities of the SU (2) σ-model, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 459-469. Zbl0686.35081MR933231

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.