Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method
Annales de l'I.H.P. Analyse non linéaire (1993)
- Volume: 10, Issue: 3, page 289-312
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAttouch, H., and Aze, D.. "Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method." Annales de l'I.H.P. Analyse non linéaire 10.3 (1993): 289-312. <http://eudml.org/doc/78304>.
@article{Attouch1993,
author = {Attouch, H., Aze, D.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {epigraphical sum; Moreau-Yosida approximation; Lasry-Lions regularization method; Hilbert space},
language = {eng},
number = {3},
pages = {289-312},
publisher = {Gauthier-Villars},
title = {Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method},
url = {http://eudml.org/doc/78304},
volume = {10},
year = {1993},
}
TY - JOUR
AU - Attouch, H.
AU - Aze, D.
TI - Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 3
SP - 289
EP - 312
LA - eng
KW - epigraphical sum; Moreau-Yosida approximation; Lasry-Lions regularization method; Hilbert space
UR - http://eudml.org/doc/78304
ER -
References
top- [1] E. Asplund, Fréchet differentiability of convex functions, Acta Math., Vol. 121, 1968, pp. 31-47. Zbl0162.17501MR231199
- [2] H. Attouch, Variational Convergences for Functions and Operators,, Applicable Mathematics SeriesPitmanLondon, 1984. Zbl0561.49012MR773850
- [3] H. Attouch, D. Azé and R.J.B. Wets, On continuity properties of the partial Legendre-Fenchel transform: convergence of sequences of augmented Lagrangians functions, Moreau-Yosida approximates and subdifferential operators, Fermat days85: Mathematicsfor Optimization, J.-B. HIRIART-URRUTY Ed., North-HollandAmsterdam, 1986, pp. 1-42. MR874359
- [4] H. Attouch and R.J.B. Wets, Epigraphical analysis, Analyse non linéaire, H. ATTOUCH, J.-P. AUBIN, F. H. CLARKE and I. EKELAND Eds., Gauthier-Villars, Paris, 1989, pp. 73-100. Zbl0676.49003MR1019109
- [5] D. Azé and J.-P. Penot, Uniformly convex and uniformly smooth convex functions (submitted). Zbl0870.49010
- [6] M. Bougeard, Contribution à la théorie de Morse en dimension finie, Thèse de 3e cycle, Université de Paris-IX, 1978.
- [7] J.-P. Penot and M. Bougeard, Approximation and decomposition properties of some classes of locally d.c. functions, Math. Progr., Vol. 41, 1989, pp. 195-227. Zbl0666.49005MR945661
- [8] M. Bougeard, J.-P. Penot and A. Pommelet, Towards minimal assumptions for the infimal convolution regularization, J. of Approx. Theory, Vol. 64, 1991, pp. 245-270. Zbl0759.49003MR1094438
- [9] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973. Zbl0252.47055MR348562
- [10] F.H. Clarke, Optimization and Nonsmooth Analysis, J. Wiley, New York, 1983. Zbl0582.49001MR709590
- [11] I. Ekeland and J.-M. Lasry, Problèmes variationnels non convexes en dualité, C. R. Acad. Sci. Paris, 291, Series I, 1980, pp. 493-497. Zbl0448.90063MR599991
- [12] J.-B. Hiriart-Urruty, A general formula on the conjugate of the difference of functions, Can. Math. Bull., Vol. 29, 1986, pp. 482-485. Zbl0608.90087MR860858
- [13] J.-B. Hiriart-Urruty and Ph. Plazanet, Moreau's decomposition Theorem revisited, Analyse non linéaire, H. ATTOUCH, J.-P. AUBIN, F. H. CLARKE, I. EKELAND Eds., Gauthier-Villars, Paris, 1989. Zbl0675.90093
- [14] J.-B. Hiriart-Urruty, Extension of Lipschitz functions, J. Math. Anal. Appl., Vol. 72, 1980, pp. 539-554. Zbl0455.26006MR593233
- [15] J.-B. Hiriart-Urruty, Lipschitz r-continuity of the approximate subdifferential of a convex function, Math. Scand., Vol. 47, 1980, pp. 123-134. Zbl0426.26005MR600082
- [16] J.-M. Lasry and P.-L. Lions, A remark on regularization in Hilbert spaces, Israel Journal of Mathematics, Vol. 55, 1986, pp. 257-266. Zbl0631.49018MR876394
- [17] J.-J. Moreau, Fonctionnelles convexes, Lecture Notes, Collège de France, Paris, 1967.
- [18] J.-J. Moreau, Proximité et dualité dans un espace Hilbertien, Bull. Soc. Math. Fr., Vol. 93, 1965, pp. 273-299. Zbl0136.12101MR201952
- [19] A. Pazy, Semi-groups of nonlinear contractions in Hilbert spaces, in Problems in Nonlinear Analysis, Edizioni Cremonese, Roma, 1971, pp. 343-430. Zbl0228.47038MR291877
- [20] A. Pommelet, Analyse convexe et théorie de Morse, Thèse de 3e cycle, Université de Paris-IX, 1982.
- [21] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1966. Zbl0193.18401MR1451876
- [22] R.T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canadian J. Math., Vol. 32, 1980, pp. 157-180. Zbl0447.49009MR571922
- [23] S. Rolewicz, On paraconvex multifunctions, Proceedings of III Symposium uber Operation Research, Mannheim, Sept. 1978, pp. 539-546. Zbl0403.49021MR541221
- [24] A.A. Vladimirov, Yu.E. Nesterov and Yu.N. Chekanov, On uniformly convex functionals, Vest. Mosk. Univ., Vol. 3, 1978, pp. 12-23 (Russian). Zbl0442.47046MR516874
- [25] J.C. Wells, Differentiable functions on Banach spaces with lipschitz derivative, J. Differential Geometry, Vol. 8, 1973, pp. 135-152. Zbl0289.58005MR370640
- [26] K. Yosida, Functional analysis, third ed., Springer, Berlin, Heidelberg, New York, 1971. Zbl0217.16001
- [27] C. Zalinescu, On uniformly convex functions, Jour. Math. Anal. Appl., Vol. 95, 1983, pp. 344-374. Zbl0519.49010MR716088
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.