Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method

H. Attouch; D. Aze

Annales de l'I.H.P. Analyse non linéaire (1993)

  • Volume: 10, Issue: 3, page 289-312
  • ISSN: 0294-1449

How to cite

top

Attouch, H., and Aze, D.. "Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method." Annales de l'I.H.P. Analyse non linéaire 10.3 (1993): 289-312. <http://eudml.org/doc/78304>.

@article{Attouch1993,
author = {Attouch, H., Aze, D.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {epigraphical sum; Moreau-Yosida approximation; Lasry-Lions regularization method; Hilbert space},
language = {eng},
number = {3},
pages = {289-312},
publisher = {Gauthier-Villars},
title = {Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method},
url = {http://eudml.org/doc/78304},
volume = {10},
year = {1993},
}

TY - JOUR
AU - Attouch, H.
AU - Aze, D.
TI - Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 3
SP - 289
EP - 312
LA - eng
KW - epigraphical sum; Moreau-Yosida approximation; Lasry-Lions regularization method; Hilbert space
UR - http://eudml.org/doc/78304
ER -

References

top
  1. [1] E. Asplund, Fréchet differentiability of convex functions, Acta Math., Vol. 121, 1968, pp. 31-47. Zbl0162.17501MR231199
  2. [2] H. Attouch, Variational Convergences for Functions and Operators,, Applicable Mathematics SeriesPitmanLondon, 1984. Zbl0561.49012MR773850
  3. [3] H. Attouch, D. Azé and R.J.B. Wets, On continuity properties of the partial Legendre-Fenchel transform: convergence of sequences of augmented Lagrangians functions, Moreau-Yosida approximates and subdifferential operators, Fermat days85: Mathematicsfor Optimization, J.-B. HIRIART-URRUTY Ed., North-HollandAmsterdam, 1986, pp. 1-42. MR874359
  4. [4] H. Attouch and R.J.B. Wets, Epigraphical analysis, Analyse non linéaire, H. ATTOUCH, J.-P. AUBIN, F. H. CLARKE and I. EKELAND Eds., Gauthier-Villars, Paris, 1989, pp. 73-100. Zbl0676.49003MR1019109
  5. [5] D. Azé and J.-P. Penot, Uniformly convex and uniformly smooth convex functions (submitted). Zbl0870.49010
  6. [6] M. Bougeard, Contribution à la théorie de Morse en dimension finie, Thèse de 3e cycle, Université de Paris-IX, 1978. 
  7. [7] J.-P. Penot and M. Bougeard, Approximation and decomposition properties of some classes of locally d.c. functions, Math. Progr., Vol. 41, 1989, pp. 195-227. Zbl0666.49005MR945661
  8. [8] M. Bougeard, J.-P. Penot and A. Pommelet, Towards minimal assumptions for the infimal convolution regularization, J. of Approx. Theory, Vol. 64, 1991, pp. 245-270. Zbl0759.49003MR1094438
  9. [9] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973. Zbl0252.47055MR348562
  10. [10] F.H. Clarke, Optimization and Nonsmooth Analysis, J. Wiley, New York, 1983. Zbl0582.49001MR709590
  11. [11] I. Ekeland and J.-M. Lasry, Problèmes variationnels non convexes en dualité, C. R. Acad. Sci. Paris, 291, Series I, 1980, pp. 493-497. Zbl0448.90063MR599991
  12. [12] J.-B. Hiriart-Urruty, A general formula on the conjugate of the difference of functions, Can. Math. Bull., Vol. 29, 1986, pp. 482-485. Zbl0608.90087MR860858
  13. [13] J.-B. Hiriart-Urruty and Ph. Plazanet, Moreau's decomposition Theorem revisited, Analyse non linéaire, H. ATTOUCH, J.-P. AUBIN, F. H. CLARKE, I. EKELAND Eds., Gauthier-Villars, Paris, 1989. Zbl0675.90093
  14. [14] J.-B. Hiriart-Urruty, Extension of Lipschitz functions, J. Math. Anal. Appl., Vol. 72, 1980, pp. 539-554. Zbl0455.26006MR593233
  15. [15] J.-B. Hiriart-Urruty, Lipschitz r-continuity of the approximate subdifferential of a convex function, Math. Scand., Vol. 47, 1980, pp. 123-134. Zbl0426.26005MR600082
  16. [16] J.-M. Lasry and P.-L. Lions, A remark on regularization in Hilbert spaces, Israel Journal of Mathematics, Vol. 55, 1986, pp. 257-266. Zbl0631.49018MR876394
  17. [17] J.-J. Moreau, Fonctionnelles convexes, Lecture Notes, Collège de France, Paris, 1967. 
  18. [18] J.-J. Moreau, Proximité et dualité dans un espace Hilbertien, Bull. Soc. Math. Fr., Vol. 93, 1965, pp. 273-299. Zbl0136.12101MR201952
  19. [19] A. Pazy, Semi-groups of nonlinear contractions in Hilbert spaces, in Problems in Nonlinear Analysis, Edizioni Cremonese, Roma, 1971, pp. 343-430. Zbl0228.47038MR291877
  20. [20] A. Pommelet, Analyse convexe et théorie de Morse, Thèse de 3e cycle, Université de Paris-IX, 1982. 
  21. [21] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1966. Zbl0193.18401MR1451876
  22. [22] R.T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canadian J. Math., Vol. 32, 1980, pp. 157-180. Zbl0447.49009MR571922
  23. [23] S. Rolewicz, On paraconvex multifunctions, Proceedings of III Symposium uber Operation Research, Mannheim, Sept. 1978, pp. 539-546. Zbl0403.49021MR541221
  24. [24] A.A. Vladimirov, Yu.E. Nesterov and Yu.N. Chekanov, On uniformly convex functionals, Vest. Mosk. Univ., Vol. 3, 1978, pp. 12-23 (Russian). Zbl0442.47046MR516874
  25. [25] J.C. Wells, Differentiable functions on Banach spaces with lipschitz derivative, J. Differential Geometry, Vol. 8, 1973, pp. 135-152. Zbl0289.58005MR370640
  26. [26] K. Yosida, Functional analysis, third ed., Springer, Berlin, Heidelberg, New York, 1971. Zbl0217.16001
  27. [27] C. Zalinescu, On uniformly convex functions, Jour. Math. Anal. Appl., Vol. 95, 1983, pp. 344-374. Zbl0519.49010MR716088

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.