Epigraphical analysis
Annales de l'I.H.P. Analyse non linéaire (1989)
- Volume: S6, page 73-100
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] Zvi Artstein & Sergiu Hart, "Law of large numbers for random sets and allocation processes," Mathematics of Operations Research6 (1981), 482-492. Zbl0524.28015
- [2] Zvi Artstein & Roger J.-B. Wets, "Approximating the integral of a multifunction," J. Multivariate Analysis24 (1988), 285-308. Zbl0649.28010
- [3] Hedy Attouch, Variational Convergence for Functions and Operators, Pitman, London. 1984., Applicable Mathematics Series . Zbl0561.49012MR773850
- [4] Hedy Attouch, Dominique Aze & Roger J.-B. Wets, "Convergence of convex-concave saddle functions: continuity properties of the Legendre-Fenchel transform with applications to convex programming and mechanics," Annales de l'Institut H. Poincaré: Analyse Nonlinéaire (1988 (to appear)), Techn. Report A.V.A.M.A.C.-Perpignan, # 85-08, 1985. Zbl0667.49009
- [5] Hedy Attouch & Colette Picard, "On the control of transmission problems across perforated walls," in Proceedings of the First International Workshop: Sensors and Actuators in Distributed Parameter Systems, A. El Jai & M. Amouroux, eds., IFAC-Université de Perpignan, Perpignan, 1987, 31-58.
- [6] Hedy Attouch & Hassan Riahi, "The epi-continuation method for minimization problems. Relation with the degree theory of F. Browder for maximal monotone operators," AVAMAC #87-02, Perpignan, 1987. Zbl0705.49007
- [7] Hedy Attouch & Roger J.-B. Wets, "Isometries for the Legendre-Fenchel transform." Transactions of the American Mathematical Society296 (1986), 33-60. Zbl0607.49009
- [8] Hedy Attouch & Roger J.-B. Wets, "Quantitative stability of variational systems: II. A framework for nonlinear conditioning," IIASA Working Paper88-9, Laxenburg, Austria., February 1988. Zbl0793.49005
- [9] Hedy Attouch & Roger J.-B. Wets, "Quantitative stability of variational systems: I. The epigraphical distance," IIASA Working Paper88-8, Laxenburg, February 1988. Zbl0753.49007
- [10] Hedy Attouch & Roger J.-B. Wets, "Lipschitzian stability of the epsilon-approximate solutions in convex optimization," IIASA Working Paper WP-87-25, Laxenburg, Austria, March 1987. Zbl0802.49009
- [11] Jean-Pierre Aubin, "Graphical convergence of set-valued maps," WP-87, IIASA Laxenburg, September 1987.
- [12] Jean-Pierre Aubin & Ivar Ekeland, Applied Nonlinear Analysis, J. Wiley Intersciences, New York, 1984. Zbl0641.47066
- [13] Dominique Aze & Jean-Paul Penot, "Operations on convergent families of sets and functions," Techn. Report AVAMAC #87-05, Perpignan, 1987. Zbl0672.26007
- [14] Kerry Back, "Convergence of Lagrange multipliers and dual variables for convex optimization problems," Mathematics of Operations Research13 (1988), 74-79. Zbl0645.49005MR931487
- [15] Kerry Back, "Continuity of the Fenchel transform of convex functions," Proceedings of the American Mathematical Society97 (August 1986), 661-667. Zbl0605.46011MR845984
- [16] Gerald Beer, "On Mosco convergence of convex sets," B ulletin of the A ustralian Mathematical Society (1987) Zbl0669.52002MR969914
- [17] Gerald Beer & Petar Kenderov, "On the argmin multifuction for lower semicontinuous functions," Proceedings of the American Mathematical Society102 (1988), 107-113. Zbl0731.49009
- [18] Haim Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North Holland, Amsterdam, 1973. Zbl0252.47055MR348562
- [19] Giuseppe Buttazzo, "Su una definizione dei Γ-limiti," Bollettino Unione Matematica Italiana14-B (1977), 722-744. Zbl0445.49016MR500789
- [20] Charles Castaing & Michel Valadier, Convex Analysis and Measurable Multifunctions, Springer Verlag,Lecture Notes in Mathematics 580, Berlin, 1977. Zbl0346.46038
- [21] Frank H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983. Zbl0582.49001MR709590
- [22] Michael Crandall, L. Craig Evans & Pierre-Louis Lions, "Some properties of the viscosity solutions of Hamilton-Jacobi equations," Tansactions of the American Mathematical Society282 (1984), 487-502. Zbl0543.35011
- [23] Gianni Dal Maso, Ennio De Giorgi & Luciano Modica, "Weak convergence of measures on spaces of lower semicontinuous functions," ISAS Report 8/86/M, Trieste, 1986. Zbl0638.46019
- [24] Ennio De Giorgi, "Convergence problems of functionals and operators," in Recent Methods in Nonlinear Analysis, E. De Giorgi, E. Magenes & U. Mosco, eds., Pitagora Editrice, Bologna, 1979, 131-188.
- [25] Szymon Dolecki, "Convergence of minima in convergence spaces," Optimization17 (1986), 553-572. Zbl0614.49013MR858305
- [26] Alain Fougeres & Annik Truffert, "Régularisation s.c.i. et épiconvergence: approximations inf-convolutives associées à un référentiel," Annali di Matematica Puri ed Applicati (1986), preprint AVAMAC# 84-13. Zbl0662.49005
- [27] Halina Frankowska, "Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equation," Working Paper WP-87-069, I.I.A.S.A., Laxenburg, June 1987. Zbl0612.49023
- [28] Christian Hess, "Quelques théorèmes limites pour des ensembles aléatoires bornés ou non," Séminaire d'Analyse Convexe, Université du Languedoc14 (1984), 12:1-12:50. MR903276
- [29] Jean-Baptiste Hiriart-Urruty & Marie-Laurence Mazure, "Formulations variationnelles de l'addition parallèle et de la soustraction parallèle d'opérateurs semi-definis positifs, Comptes Rendus de l'Académie des Sciences de Paris302 (1986), 527-530. Zbl0597.15008
- [30] Jean-Luc Joly, "Une famille de topologies sur l'ensemble des fonstions convexes pour lesquelles la polarité est bicontinue," J. Mathématiques Pures et Appliquées52 (1973). 421-441. Zbl0282.46005MR500129
- [31] Pierre-Jean Laurent, Approximation et Optimisation, Hermann, Paris, 1972. Zbl0238.90058MR467080
- [32] Jean-Jacques Moreau, "Rafle par un convexe variable, 1ère partie.," Séminaire d'Analyse Convexe, Université de Montpellier 1 (1971), 15:1-15:xx. Zbl0343.49019
- [33] Jean-Jacques Moreau, "Rafle par un convexe variable, 2ème partie.," Séminaire d'Analyse Convexe, Université de Montpellier 2 (1972), 3:1-3:xx. Zbl0343.49020
- [34] James-Louis Ndoutoume, "Calcul différentiel généralisé du second ordre pour des fonctions convexes," AVAMAC, Université de Perpignan, Vol.2, no. 2., 1986.
- [35] Jean-Paul Penot, "Preservation of persistence and stability under intersection and operations," Manuscript, Université de Pau, 1986, (to appear).
- [36] Stephen M. Robinson, "Local epi-continuity and local optimization," Mathematical Programming37 (1987), 208-222. Zbl0623.90078MR883021
- [37] R.T. Rockafellar, "First and second-order epi-differentiability in nonlinear programming," Manuscript, University of Washington, Seattle, 1987. Zbl0655.49010MR936806
- [38] R.T. Rockafellar, "Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives," Manuscript, University of Washington, Seattle, 1987. Zbl0698.90070
- [39] R.T. Rockafellar & Roger J.-B. Wets, "Variational systems, an introduction," in Multifunctions and Integrands: Stochastic Analysis, Approximation and Optimization, G. Salinetti, ed., Springer Verlag,Lecture Notes in Mathematics1091, Berlin, 1984, 1-54.
- [40] Michel Volle, "Equations inf-convolutives," Manuscript, Université de Limoges, February 1988.