Compensated convexity and its applications

Kewei Zhang

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 4, page 743-771
  • ISSN: 0294-1449

How to cite

top

Zhang, Kewei. "Compensated convexity and its applications." Annales de l'I.H.P. Analyse non linéaire 25.4 (2008): 743-771. <http://eudml.org/doc/78810>.

@article{Zhang2008,
author = {Zhang, Kewei},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {convex functions; convex envelope; weak lower semi-continuous functions; Moreau envelope; squared-distance functions; tight approximation; -smoothing; quasi-convexity; maximum function},
language = {eng},
number = {4},
pages = {743-771},
publisher = {Elsevier},
title = {Compensated convexity and its applications},
url = {http://eudml.org/doc/78810},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Zhang, Kewei
TI - Compensated convexity and its applications
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 4
SP - 743
EP - 771
LA - eng
KW - convex functions; convex envelope; weak lower semi-continuous functions; Moreau envelope; squared-distance functions; tight approximation; -smoothing; quasi-convexity; maximum function
UR - http://eudml.org/doc/78810
ER -

References

top
  1. [1] Attouch H., Aze D., Approximations and regularization of arbitrary functions in Hilbert spaces by the Lasry–Lions method, Anal. Non-Lin. H. Poincaré Inst.10 (1993) 289-312. Zbl0780.41021MR1230710
  2. [2] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
  3. [3] Attouch H., Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman, London, 1984. Zbl0561.49012MR773850
  4. [4] Auslander A., Penalty and barrier methods: a unified framework, SIAM J. Optim.10 (1999) 211-230. Zbl0953.90045MR1742321
  5. [5] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
  6. [6] Bertsekas D.P., Constrained Optimization and Lagrangian Multiplier Methods, Academic Press, 1982. Zbl0572.90067
  7. [7] Bhattacharya K., Firoozy N.B., James R.D., Kohn R.V., Restrictions on microstructures, Proc. Royal Soc. Edinb. A124 (1994) 843-878. Zbl0808.73063MR1303758
  8. [8] Benoist J., Hiriart-Urruty J.-B., What is the subdifferential of the closed convex hull of a function, SIAM J. Math. Anal.27 (1996) 1661-1679. Zbl0876.49018MR1416513
  9. [9] Ball J.M., James R.D., Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal.100 (1987) 13-52. Zbl0629.49020MR906132
  10. [10] Ball J.M., James R.D., Proposed experimental tests of a theory of fine microstructures and the two-well problem, Phil. Royal Soc. Lond. A338 (1992) 389-450. Zbl0758.73009
  11. [11] Ball J.M., Kirchheim B., Kristensen J., Regularity of quasi-convex envelopes, Calc. Var. Partial Differ. Equ.11 (2000) 333-359. Zbl0972.49024MR1808126
  12. [12] Blum H., A transformation for extracting new descriptors of shape, in: Dunn W.W. (Ed.), Prop. Symp. Models for the Perception of Speech and Visual Form, MIT Press, 1967, pp. 362-380. 
  13. [13] Ben-Tal A., Teboulle M., A smoothing technique for nondifferentiable optimization problems, in: Optimization, Lect. Notes in Math., vol. 1405, Springer, 1989, pp. 1-11. Zbl0683.90078MR1036540
  14. [14] Choi H.I., Choi S.W., Moon H.P., Mathematical theory of medial axis transform, Pacific J. Math.181 (1997) 57-88. Zbl0885.53004MR1491036
  15. [15] Crippen G.M., Havel T.F., Distance Geometry and Molecular Conformation, John Wiley & Sons, 1988. Zbl1066.51500MR975025
  16. [16] Chen X., Qi H., Qi L., Teo K.-K., Smooth convex approximation to the maximum eigenvalue function, J. Global Optim.30 (2004) 253-270. Zbl1066.90081MR2115703
  17. [17] Dacorogna B., Direct Methods in the Calculus of Variations, Springer, 1989. Zbl0703.49001MR990890
  18. [18] Firoozye N.B., Optimal use of the translation method and relaxations of variational problems, Comm. Pure Appl. Math.44 (1991) 643-678. Zbl0733.49018MR1109375
  19. [19] Grabovsky Yu., Bounds and extreme microstructures for two-component composites: a unified treatment based on the translation method, Proc. Royal Soc. Lond. A452 (1996) 919-944. Zbl0892.73030MR1383293
  20. [20] Griewank, Rabier P.J., On the smoothness of convex envelopes, Trans. AMS322 (1990) 691-709. Zbl0712.49010MR986024
  21. [21] Hiriart-Urruty J.-B., Lemaréchal C., Fundamentals of Convex Analysis, Springer, 2001. Zbl0998.49001MR1865628
  22. [22] Kohn R.V., The relaxation of a double-well energy, Cont. Mech. Therm.3 (1991) 981-1000. Zbl0825.73029MR1122017
  23. [23] Kirchheim B., Kristensen J., Differentiability of convex envelopes, C. R. Acad. Sci., Paris, Sr. I, Math.333 (2001) 725-728. Zbl1053.49013MR1868942
  24. [24] Kohn R.V., Milton G.W., On bounding the effective conductivity of anisotropic composites, in: Ericksen J.L., Kinderlehrer D., Kohn R.V., Lions P.L. (Eds.), Homogenization and Effective Moduli of Materials and Media, Springer, New York, 1986, pp. 97-125. Zbl0631.73012MR859413
  25. [25] Lay S.R., Convex Sets and Their Applications, John Wiley & Sons, 1982. Zbl0492.52001MR655598
  26. [26] Lurie K.A., Cherkaev A.V., Exact estimates of the conductivity of composites formed two isotropically conducting media taken in prescribed proportion, Proc. Royal Soc. Edinb. A99 (1984) 71-87. Zbl0564.73079MR781086
  27. [27] Lasry J.-M., Lions P.-L., A remark on regularization in Hilbert spaces, Israel J. Math.55 (1986) 257-266. Zbl0631.49018MR876394
  28. [28] Milton G., On characterizing the set of possible effective tensors of composites: the variational method and the translation method, Comm. Pure Appl. Math.XLIII (1990) 63-125. Zbl0751.73041MR1024190
  29. [29] Mantegazza C., Mennacci A.C., Hamilton–Jacobi equations and distance functions on Riemannian manifolds, Appl. Math. Optim.47 (2002) 1-25. Zbl1048.49021MR1941909
  30. [30] Morrey C.B., Multiple Integrals in the Calculus of Variations, Springer, 1966. Zbl0142.38701MR2492985
  31. [31] Moreau J.J., Proximité dualité dans un espace Hilbertien, Bull. Soc. Math. Fr.93 (1965) 273-299. Zbl0136.12101MR201952
  32. [32] Moreau J.J., Fonctionnelles convexes, Lecture Notes, Collège de France, 1967. 
  33. [33] Nesi V., Bounds for the effective conductivity of two-dimensional composites made of n 3 isotropic phases in prescribed volume fraction: the weighted translation method, Proc. Royal Soc. Edinb. A125 (1995) 1219-1239. Zbl0852.35016MR1363001
  34. [34] Nesterov Yu., Smooth minimization of non-smooth functions, Math. Program. Ser. A103 (2005) 127-152. Zbl1079.90102MR2166537
  35. [35] Pipkin A.C., Elastic materials with two preferred states, Q. J. Mech. Appl. Math.44 (1991) 1-15. Zbl0735.73032MR1093392
  36. [36] Patrikalakis N.M., Maekawa T., Shape interrogation for computer aided design and manufacturing, Springer, 2002. Zbl1035.65016MR1891533
  37. [37] H.-D. Qi, P. Tseng, Analysis of piecewise smooth functions and almost smooth functions, 21 (2002) 45–66. 
  38. [38] Rockafellar R.T., Minimax theorems and conjugate saddle functions, Math. Scand.14 (1964) 151-173. Zbl0127.28309MR175037
  39. [39] Rockafellar R.T., Convex Analysis, Princeton Univ. Press, 1966. Zbl0193.18401MR1451876
  40. [40] Serra J., Image Analysis and Mathematical Morphology, Academic Press, 1982. Zbl0565.92001MR753649
  41. [41] Sheu R.L., Lin J.Y., Solving continuous min-max problems by an iterative entropic regularization method, J. Optim. Theory Appl.121 (2004) 597-612. Zbl1107.90037MR2084345
  42. [42] Šverák V., On the problem of two wells, in: Microstructure and Phase Transition, IMA Vol. Math. Appl., vol. 54, Springer, New York, 1993, pp. 183-189. Zbl0797.73079MR1320537
  43. [43] Tartar L., Compensated compactness and applications to partial differential equations, in: Knops R.J. (Ed.), Nonlinear Analysis and Mechanics, Heriot-Watt Symp. IV, Pitman, 1979. Zbl0437.35004MR584398
  44. [44] Tartar L., Estimations fine des coefficients homogénéisés, in: Krée P. (Ed.), Ennio de Giorgi's Colloquium, Pitman, 1985, pp. 168-187. Zbl0586.35004MR909716
  45. [45] Voronoi G., Nouvelles applications des parametres continus a la theorie des formes quadratiques, J. Reine Angew. Math.134 (1908) 198-287. Zbl38.0261.01JFM39.0274.01
  46. [46] Wolter F.E., Cut locus and medial axis in global shape interrogation and representation, ftp://ftp.gdv.uni-hannover.de/www/paper/ReportMIT93.pdf, MIT, Dept. Ocean Engineering, Design Laboratory Memorandum, 1993, no. 92-2. 
  47. [47] Yosida K., Functional Analysis, Springer, 1971. 
  48. [48] Zhang K., Energy minimizers in nonlinear elasticity and the implicit function theorem, Arch. Rational Mech. Anal.114 (1991) 95-117. Zbl0734.73009MR1094432
  49. [49] Zhang K., On some quasi-convex functions with linear growth, J. Convex Anal.5 (1998) 133-146. Zbl0915.49008MR1649465
  50. [50] Zhang K., On various semi-convex hulls in the calculus of variations, Cal. Var. PDEs6 (1998) 143-160. Zbl0896.49005MR1606473
  51. [51] Zhang K., On various semi-convex relaxations of the squared-distance function, Proc. Royal Soc. Edinb. A129 (1999) 1309-1323. Zbl0936.49009MR1728527
  52. [52] Zhang K., A two-well structure and intrinsic mountain pass points, Calc. Var. PDEs13 (2001) 231-264. Zbl0997.49013MR1861099
  53. [53] Zhang K., Maximal extension for linear spaces of real matrices with large rank, Proc. Royal Soc. Edinb. A131 (2001) 1481-1491. Zbl0998.15019MR1869646
  54. [54] Zhang K., An elementary derivation of the generalized Kohn–Strang relaxation formulae, J. Convex Anal.9 (2002) 269-285. Zbl1004.49011MR1917400
  55. [55] Zhang K., On conditions for equality of relaxations in the calculus of variations, J. Nonl. Convex Anal.3 (2002) 145-154. Zbl1035.49013MR1924763
  56. [56] Zhang K., On separation of gradient Young measures, Calc. Var. PDEs17 (2003) 85-103. Zbl1036.49025MR1979117

NotesEmbed ?

top

You must be logged in to post comments.