Compensated convexity and its applications

Kewei Zhang

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 4, page 743-771
  • ISSN: 0294-1449

How to cite

top

Zhang, Kewei. "Compensated convexity and its applications." Annales de l'I.H.P. Analyse non linéaire 25.4 (2008): 743-771. <http://eudml.org/doc/78810>.

@article{Zhang2008,
author = {Zhang, Kewei},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {convex functions; convex envelope; weak lower semi-continuous functions; Moreau envelope; squared-distance functions; tight approximation; -smoothing; quasi-convexity; maximum function},
language = {eng},
number = {4},
pages = {743-771},
publisher = {Elsevier},
title = {Compensated convexity and its applications},
url = {http://eudml.org/doc/78810},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Zhang, Kewei
TI - Compensated convexity and its applications
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 4
SP - 743
EP - 771
LA - eng
KW - convex functions; convex envelope; weak lower semi-continuous functions; Moreau envelope; squared-distance functions; tight approximation; -smoothing; quasi-convexity; maximum function
UR - http://eudml.org/doc/78810
ER -

References

top
  1. [1] Attouch H., Aze D., Approximations and regularization of arbitrary functions in Hilbert spaces by the Lasry–Lions method, Anal. Non-Lin. H. Poincaré Inst.10 (1993) 289-312. Zbl0780.41021MR1230710
  2. [2] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
  3. [3] Attouch H., Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman, London, 1984. Zbl0561.49012MR773850
  4. [4] Auslander A., Penalty and barrier methods: a unified framework, SIAM J. Optim.10 (1999) 211-230. Zbl0953.90045MR1742321
  5. [5] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
  6. [6] Bertsekas D.P., Constrained Optimization and Lagrangian Multiplier Methods, Academic Press, 1982. Zbl0572.90067
  7. [7] Bhattacharya K., Firoozy N.B., James R.D., Kohn R.V., Restrictions on microstructures, Proc. Royal Soc. Edinb. A124 (1994) 843-878. Zbl0808.73063MR1303758
  8. [8] Benoist J., Hiriart-Urruty J.-B., What is the subdifferential of the closed convex hull of a function, SIAM J. Math. Anal.27 (1996) 1661-1679. Zbl0876.49018MR1416513
  9. [9] Ball J.M., James R.D., Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal.100 (1987) 13-52. Zbl0629.49020MR906132
  10. [10] Ball J.M., James R.D., Proposed experimental tests of a theory of fine microstructures and the two-well problem, Phil. Royal Soc. Lond. A338 (1992) 389-450. Zbl0758.73009
  11. [11] Ball J.M., Kirchheim B., Kristensen J., Regularity of quasi-convex envelopes, Calc. Var. Partial Differ. Equ.11 (2000) 333-359. Zbl0972.49024MR1808126
  12. [12] Blum H., A transformation for extracting new descriptors of shape, in: Dunn W.W. (Ed.), Prop. Symp. Models for the Perception of Speech and Visual Form, MIT Press, 1967, pp. 362-380. 
  13. [13] Ben-Tal A., Teboulle M., A smoothing technique for nondifferentiable optimization problems, in: Optimization, Lect. Notes in Math., vol. 1405, Springer, 1989, pp. 1-11. Zbl0683.90078MR1036540
  14. [14] Choi H.I., Choi S.W., Moon H.P., Mathematical theory of medial axis transform, Pacific J. Math.181 (1997) 57-88. Zbl0885.53004MR1491036
  15. [15] Crippen G.M., Havel T.F., Distance Geometry and Molecular Conformation, John Wiley & Sons, 1988. Zbl1066.51500MR975025
  16. [16] Chen X., Qi H., Qi L., Teo K.-K., Smooth convex approximation to the maximum eigenvalue function, J. Global Optim.30 (2004) 253-270. Zbl1066.90081MR2115703
  17. [17] Dacorogna B., Direct Methods in the Calculus of Variations, Springer, 1989. Zbl0703.49001MR990890
  18. [18] Firoozye N.B., Optimal use of the translation method and relaxations of variational problems, Comm. Pure Appl. Math.44 (1991) 643-678. Zbl0733.49018MR1109375
  19. [19] Grabovsky Yu., Bounds and extreme microstructures for two-component composites: a unified treatment based on the translation method, Proc. Royal Soc. Lond. A452 (1996) 919-944. Zbl0892.73030MR1383293
  20. [20] Griewank, Rabier P.J., On the smoothness of convex envelopes, Trans. AMS322 (1990) 691-709. Zbl0712.49010MR986024
  21. [21] Hiriart-Urruty J.-B., Lemaréchal C., Fundamentals of Convex Analysis, Springer, 2001. Zbl0998.49001MR1865628
  22. [22] Kohn R.V., The relaxation of a double-well energy, Cont. Mech. Therm.3 (1991) 981-1000. Zbl0825.73029MR1122017
  23. [23] Kirchheim B., Kristensen J., Differentiability of convex envelopes, C. R. Acad. Sci., Paris, Sr. I, Math.333 (2001) 725-728. Zbl1053.49013MR1868942
  24. [24] Kohn R.V., Milton G.W., On bounding the effective conductivity of anisotropic composites, in: Ericksen J.L., Kinderlehrer D., Kohn R.V., Lions P.L. (Eds.), Homogenization and Effective Moduli of Materials and Media, Springer, New York, 1986, pp. 97-125. Zbl0631.73012MR859413
  25. [25] Lay S.R., Convex Sets and Their Applications, John Wiley & Sons, 1982. Zbl0492.52001MR655598
  26. [26] Lurie K.A., Cherkaev A.V., Exact estimates of the conductivity of composites formed two isotropically conducting media taken in prescribed proportion, Proc. Royal Soc. Edinb. A99 (1984) 71-87. Zbl0564.73079MR781086
  27. [27] Lasry J.-M., Lions P.-L., A remark on regularization in Hilbert spaces, Israel J. Math.55 (1986) 257-266. Zbl0631.49018MR876394
  28. [28] Milton G., On characterizing the set of possible effective tensors of composites: the variational method and the translation method, Comm. Pure Appl. Math.XLIII (1990) 63-125. Zbl0751.73041MR1024190
  29. [29] Mantegazza C., Mennacci A.C., Hamilton–Jacobi equations and distance functions on Riemannian manifolds, Appl. Math. Optim.47 (2002) 1-25. Zbl1048.49021MR1941909
  30. [30] Morrey C.B., Multiple Integrals in the Calculus of Variations, Springer, 1966. Zbl0142.38701MR2492985
  31. [31] Moreau J.J., Proximité dualité dans un espace Hilbertien, Bull. Soc. Math. Fr.93 (1965) 273-299. Zbl0136.12101MR201952
  32. [32] Moreau J.J., Fonctionnelles convexes, Lecture Notes, Collège de France, 1967. 
  33. [33] Nesi V., Bounds for the effective conductivity of two-dimensional composites made of n 3 isotropic phases in prescribed volume fraction: the weighted translation method, Proc. Royal Soc. Edinb. A125 (1995) 1219-1239. Zbl0852.35016MR1363001
  34. [34] Nesterov Yu., Smooth minimization of non-smooth functions, Math. Program. Ser. A103 (2005) 127-152. Zbl1079.90102MR2166537
  35. [35] Pipkin A.C., Elastic materials with two preferred states, Q. J. Mech. Appl. Math.44 (1991) 1-15. Zbl0735.73032MR1093392
  36. [36] Patrikalakis N.M., Maekawa T., Shape interrogation for computer aided design and manufacturing, Springer, 2002. Zbl1035.65016MR1891533
  37. [37] H.-D. Qi, P. Tseng, Analysis of piecewise smooth functions and almost smooth functions, 21 (2002) 45–66. 
  38. [38] Rockafellar R.T., Minimax theorems and conjugate saddle functions, Math. Scand.14 (1964) 151-173. Zbl0127.28309MR175037
  39. [39] Rockafellar R.T., Convex Analysis, Princeton Univ. Press, 1966. Zbl0193.18401MR1451876
  40. [40] Serra J., Image Analysis and Mathematical Morphology, Academic Press, 1982. Zbl0565.92001MR753649
  41. [41] Sheu R.L., Lin J.Y., Solving continuous min-max problems by an iterative entropic regularization method, J. Optim. Theory Appl.121 (2004) 597-612. Zbl1107.90037MR2084345
  42. [42] Šverák V., On the problem of two wells, in: Microstructure and Phase Transition, IMA Vol. Math. Appl., vol. 54, Springer, New York, 1993, pp. 183-189. Zbl0797.73079MR1320537
  43. [43] Tartar L., Compensated compactness and applications to partial differential equations, in: Knops R.J. (Ed.), Nonlinear Analysis and Mechanics, Heriot-Watt Symp. IV, Pitman, 1979. Zbl0437.35004MR584398
  44. [44] Tartar L., Estimations fine des coefficients homogénéisés, in: Krée P. (Ed.), Ennio de Giorgi's Colloquium, Pitman, 1985, pp. 168-187. Zbl0586.35004MR909716
  45. [45] Voronoi G., Nouvelles applications des parametres continus a la theorie des formes quadratiques, J. Reine Angew. Math.134 (1908) 198-287. Zbl38.0261.01JFM39.0274.01
  46. [46] Wolter F.E., Cut locus and medial axis in global shape interrogation and representation, ftp://ftp.gdv.uni-hannover.de/www/paper/ReportMIT93.pdf, MIT, Dept. Ocean Engineering, Design Laboratory Memorandum, 1993, no. 92-2. 
  47. [47] Yosida K., Functional Analysis, Springer, 1971. 
  48. [48] Zhang K., Energy minimizers in nonlinear elasticity and the implicit function theorem, Arch. Rational Mech. Anal.114 (1991) 95-117. Zbl0734.73009MR1094432
  49. [49] Zhang K., On some quasi-convex functions with linear growth, J. Convex Anal.5 (1998) 133-146. Zbl0915.49008MR1649465
  50. [50] Zhang K., On various semi-convex hulls in the calculus of variations, Cal. Var. PDEs6 (1998) 143-160. Zbl0896.49005MR1606473
  51. [51] Zhang K., On various semi-convex relaxations of the squared-distance function, Proc. Royal Soc. Edinb. A129 (1999) 1309-1323. Zbl0936.49009MR1728527
  52. [52] Zhang K., A two-well structure and intrinsic mountain pass points, Calc. Var. PDEs13 (2001) 231-264. Zbl0997.49013MR1861099
  53. [53] Zhang K., Maximal extension for linear spaces of real matrices with large rank, Proc. Royal Soc. Edinb. A131 (2001) 1481-1491. Zbl0998.15019MR1869646
  54. [54] Zhang K., An elementary derivation of the generalized Kohn–Strang relaxation formulae, J. Convex Anal.9 (2002) 269-285. Zbl1004.49011MR1917400
  55. [55] Zhang K., On conditions for equality of relaxations in the calculus of variations, J. Nonl. Convex Anal.3 (2002) 145-154. Zbl1035.49013MR1924763
  56. [56] Zhang K., On separation of gradient Young measures, Calc. Var. PDEs17 (2003) 85-103. Zbl1036.49025MR1979117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.