The minimal period problem of classical hamiltonian systems with even potentials
Annales de l'I.H.P. Analyse non linéaire (1993)
- Volume: 10, Issue: 6, page 605-626
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLong, Yiming. "The minimal period problem of classical hamiltonian systems with even potentials." Annales de l'I.H.P. Analyse non linéaire 10.6 (1993): 605-626. <http://eudml.org/doc/78319>.
@article{Long1993,
author = {Long, Yiming},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {even potential; periodic solutions; -symmetry},
language = {eng},
number = {6},
pages = {605-626},
publisher = {Gauthier-Villars},
title = {The minimal period problem of classical hamiltonian systems with even potentials},
url = {http://eudml.org/doc/78319},
volume = {10},
year = {1993},
}
TY - JOUR
AU - Long, Yiming
TI - The minimal period problem of classical hamiltonian systems with even potentials
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 6
SP - 605
EP - 626
LA - eng
KW - even potential; periodic solutions; -symmetry
UR - http://eudml.org/doc/78319
ER -
References
top- [1] H. Amann and E. Zehnder, Nontrivial Solutions for a Class of Nonresonance Problems and Applications to Nonlinear Deferential Equations, Ann. Scuola Norm. Super. Pisa, Vol. 7, 1980, pp. 539-603. Zbl0452.47077
- [2] A. Ambrosetti and V. Coti Zelati, Solutions with Minimal Period for Hamiltonian Systems in a Potential Well, Ann. Inst. Henri-Poincaré, Anal. non linéaire, Vol. 4, 1987, pp. 275-296. Zbl0623.58013
- [3] A. Ambrosetti and G. Mancini, Solutions of Minimal Period for a Class of Convex Hamiltonian Systems, Math. Ann., Vol. 255, 1981, pp. 405-421. Zbl0466.70022
- [4] A. Ambrosetti and P. Rabinowitz, Dual Variational Methods in Critical Point Theory, J. Funct. Anal., Vol. 14, 1973, pp. 343-387. Zbl0273.49063
- [5] F. Clarke and I. Ekeland, Hamiltonian Trajectories Having Prescribed Minimal Period, Comm. Pure Appl. Math., Vol. 33, 1980, pp. 103-116. Zbl0403.70016
- [6] S. Deng, Minimal Period Solutions of a Class of Hamiltonian Equation Systems, Acta Math. Sinica, Vol. 27, 1984, pp. 664-675. Zbl0577.58015
- [7] I. Ekeland, Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. I.H.P. Anal. non linéaire, Vol. 1, 1984, pp. 19-78. Zbl0537.58018
- [8] I. Ekeland, An Index Theory for Periodic Solutions of Convex Hamiltonian Systems, Proc. Symp. in Pure Math., Vol. 45, 1986, pp. 395-423. Zbl0596.34023
- [9] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, Berlin, 1990. Zbl0707.70003
- [10] I. Ekeland and H. Hofer, Periodic Solutions with Prescribed Period for Convex Autonomous Hamiltonian Systems, Inven. Math., Vol. 81, 1985, pp. 155-188. Zbl0594.58035
- [11] N. Ghoussoub, Location, Multiplicity and Morse Indices of Min-Max Critical Points, Preprint. Zbl0736.58011
- [12] M. Girardi and M. Matzeu, Some Results on Solutions of Minimal Period to Superquadratic Hamiltonian Equations, Nonlinear Anal. T.M.A., Vol. 7, 1983, pp. 475-482. Zbl0512.70021
- [13] M. Girardi and M. Matzeu, Solutions of Minimal Period for a Class of Nonconvex Hamiltonian Systems and Applications to the Fixed Energy Problem, Nonlinear Anal. T.M.A., Vol. 10, 1986, pp. 371-382. Zbl0607.70018
- [14] M. Girardi and M. Matzeu, Periodic Solutions of Convex Autonomous Hamiltonian Systems with a Quadratic Growth at the Origin and Superquadratic at Infinity, Ann. Mat. pura ed appl., Vol. 147, 1987, pp. 21-72. Zbl0631.58014
- [15] M. Girardi and M. Matzeu, Dual Morse Index Estimates for Periodic Solutions of Hamiltonian Systems in Some Nonconvex Superquadratic Case, Nonlinear Anal. T.M.A., Vol. 17, 1991, pp. 481-497. Zbl0779.34033
- [16] M. Girardi and M. Matzeu, Essential Critical Points of Linking Type and Solutions of Minimal Period to Superquadratic Hamiltonian Systems, Preprint, 1991. Zbl0776.58030
- [17] H. Hofer, A Geometric Description of the Neighbourhood of a Critical Point Given by the Mountain-Pass Theorem, J. London Math. Soc., Vol. 31, 1985, pp. 556-570. Zbl0573.58007
- [18] M.A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, 1963. Zbl0111.30303
- [19] A. Lazer and S. Solimini, Nontrivial Solutions of Operator Equations and Morse Indices of Critical Points of Min-Max Type, Nonlinear Anal. T.M.A., Vol. 12, 1988, pp. 761-775. Zbl0667.47036
- [20] Y. Long, The Minimal Period Problem of Periodic Solutions for Autonomous Superquadratic Second Order Hamiltonian System, Preprint of Nankai, Inst. Math. Nankai Univ., April 1991. Revised version, Preprint of F.I. Math. E.T.H.-Zürich, Nov. 1991, May 1992, J. Diff. Equa. (to appear).
- [21] P. Rabinowitz, Periodic Solutions of Hamiltonian Systems, Comm. Pure Appl. Math., Vol. 31, 1978, pp. 157-184. Zbl0358.70014
- [22] P. Rabinowitz, Periodic Solutions of Hamiltonian Systems: a Survey, S.I.A.M. J. Math. Anal., Vol. 13, 1982, pp. 343-352. Zbl0521.58028
- [23] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, C.B.M.S. Reg. Conf. Ser. in Math., No. 65, Amer. Math. Soc., 1986. Zbl0609.58002
- [24] P. Rabinowitz, On the Existence of Periodic Solutions for a class of Symmetric Hamiltonian Systems, Nonlinear Anal. T.M.A., Vol. 11, 1987, pp. 599-611.
- [25] S. Solimini, Morse Index Estimates in Min-Max Theorems, Manus. Math., Vol. 63, 1989, pp. 421-453. Zbl0685.58010
- [26] G. Tian, On the Mountain-Pass Lemma, Kexue Tongbao, Vol. 29, 1984, pp. 1151-1154. Zbl0588.58012
- [27] S. Zhang, Doctoral Thesis, Nankai University, 1991.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.