The minimal period problem of classical hamiltonian systems with even potentials

Yiming Long

Annales de l'I.H.P. Analyse non linéaire (1993)

  • Volume: 10, Issue: 6, page 605-626
  • ISSN: 0294-1449

How to cite

top

Long, Yiming. "The minimal period problem of classical hamiltonian systems with even potentials." Annales de l'I.H.P. Analyse non linéaire 10.6 (1993): 605-626. <http://eudml.org/doc/78319>.

@article{Long1993,
author = {Long, Yiming},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {even potential; periodic solutions; -symmetry},
language = {eng},
number = {6},
pages = {605-626},
publisher = {Gauthier-Villars},
title = {The minimal period problem of classical hamiltonian systems with even potentials},
url = {http://eudml.org/doc/78319},
volume = {10},
year = {1993},
}

TY - JOUR
AU - Long, Yiming
TI - The minimal period problem of classical hamiltonian systems with even potentials
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 6
SP - 605
EP - 626
LA - eng
KW - even potential; periodic solutions; -symmetry
UR - http://eudml.org/doc/78319
ER -

References

top
  1. [1] H. Amann and E. Zehnder, Nontrivial Solutions for a Class of Nonresonance Problems and Applications to Nonlinear Deferential Equations, Ann. Scuola Norm. Super. Pisa, Vol. 7, 1980, pp. 539-603. Zbl0452.47077
  2. [2] A. Ambrosetti and V. Coti Zelati, Solutions with Minimal Period for Hamiltonian Systems in a Potential Well, Ann. Inst. Henri-Poincaré, Anal. non linéaire, Vol. 4, 1987, pp. 275-296. Zbl0623.58013
  3. [3] A. Ambrosetti and G. Mancini, Solutions of Minimal Period for a Class of Convex Hamiltonian Systems, Math. Ann., Vol. 255, 1981, pp. 405-421. Zbl0466.70022
  4. [4] A. Ambrosetti and P. Rabinowitz, Dual Variational Methods in Critical Point Theory, J. Funct. Anal., Vol. 14, 1973, pp. 343-387. Zbl0273.49063
  5. [5] F. Clarke and I. Ekeland, Hamiltonian Trajectories Having Prescribed Minimal Period, Comm. Pure Appl. Math., Vol. 33, 1980, pp. 103-116. Zbl0403.70016
  6. [6] S. Deng, Minimal Period Solutions of a Class of Hamiltonian Equation Systems, Acta Math. Sinica, Vol. 27, 1984, pp. 664-675. Zbl0577.58015
  7. [7] I. Ekeland, Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. I.H.P. Anal. non linéaire, Vol. 1, 1984, pp. 19-78. Zbl0537.58018
  8. [8] I. Ekeland, An Index Theory for Periodic Solutions of Convex Hamiltonian Systems, Proc. Symp. in Pure Math., Vol. 45, 1986, pp. 395-423. Zbl0596.34023
  9. [9] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, Berlin, 1990. Zbl0707.70003
  10. [10] I. Ekeland and H. Hofer, Periodic Solutions with Prescribed Period for Convex Autonomous Hamiltonian Systems, Inven. Math., Vol. 81, 1985, pp. 155-188. Zbl0594.58035
  11. [11] N. Ghoussoub, Location, Multiplicity and Morse Indices of Min-Max Critical Points, Preprint. Zbl0736.58011
  12. [12] M. Girardi and M. Matzeu, Some Results on Solutions of Minimal Period to Superquadratic Hamiltonian Equations, Nonlinear Anal. T.M.A., Vol. 7, 1983, pp. 475-482. Zbl0512.70021
  13. [13] M. Girardi and M. Matzeu, Solutions of Minimal Period for a Class of Nonconvex Hamiltonian Systems and Applications to the Fixed Energy Problem, Nonlinear Anal. T.M.A., Vol. 10, 1986, pp. 371-382. Zbl0607.70018
  14. [14] M. Girardi and M. Matzeu, Periodic Solutions of Convex Autonomous Hamiltonian Systems with a Quadratic Growth at the Origin and Superquadratic at Infinity, Ann. Mat. pura ed appl., Vol. 147, 1987, pp. 21-72. Zbl0631.58014
  15. [15] M. Girardi and M. Matzeu, Dual Morse Index Estimates for Periodic Solutions of Hamiltonian Systems in Some Nonconvex Superquadratic Case, Nonlinear Anal. T.M.A., Vol. 17, 1991, pp. 481-497. Zbl0779.34033
  16. [16] M. Girardi and M. Matzeu, Essential Critical Points of Linking Type and Solutions of Minimal Period to Superquadratic Hamiltonian Systems, Preprint, 1991. Zbl0776.58030
  17. [17] H. Hofer, A Geometric Description of the Neighbourhood of a Critical Point Given by the Mountain-Pass Theorem, J. London Math. Soc., Vol. 31, 1985, pp. 556-570. Zbl0573.58007
  18. [18] M.A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, 1963. Zbl0111.30303
  19. [19] A. Lazer and S. Solimini, Nontrivial Solutions of Operator Equations and Morse Indices of Critical Points of Min-Max Type, Nonlinear Anal. T.M.A., Vol. 12, 1988, pp. 761-775. Zbl0667.47036
  20. [20] Y. Long, The Minimal Period Problem of Periodic Solutions for Autonomous Superquadratic Second Order Hamiltonian System, Preprint of Nankai, Inst. Math. Nankai Univ., April 1991. Revised version, Preprint of F.I. Math. E.T.H.-Zürich, Nov. 1991, May 1992, J. Diff. Equa. (to appear). 
  21. [21] P. Rabinowitz, Periodic Solutions of Hamiltonian Systems, Comm. Pure Appl. Math., Vol. 31, 1978, pp. 157-184. Zbl0358.70014
  22. [22] P. Rabinowitz, Periodic Solutions of Hamiltonian Systems: a Survey, S.I.A.M. J. Math. Anal., Vol. 13, 1982, pp. 343-352. Zbl0521.58028
  23. [23] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, C.B.M.S. Reg. Conf. Ser. in Math., No. 65, Amer. Math. Soc., 1986. Zbl0609.58002
  24. [24] P. Rabinowitz, On the Existence of Periodic Solutions for a class of Symmetric Hamiltonian Systems, Nonlinear Anal. T.M.A., Vol. 11, 1987, pp. 599-611. 
  25. [25] S. Solimini, Morse Index Estimates in Min-Max Theorems, Manus. Math., Vol. 63, 1989, pp. 421-453. Zbl0685.58010
  26. [26] G. Tian, On the Mountain-Pass Lemma, Kexue Tongbao, Vol. 29, 1984, pp. 1151-1154. Zbl0588.58012
  27. [27] S. Zhang, Doctoral Thesis, Nankai University, 1991. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.