Solutions with minimal period for hamiltonian systems in a potential well

Antonio Ambrosetti; Vittorio Coti Zelati

Annales de l'I.H.P. Analyse non linéaire (1987)

  • Volume: 4, Issue: 3, page 275-296
  • ISSN: 0294-1449

How to cite

top

Ambrosetti, Antonio, and Coti Zelati, Vittorio. "Solutions with minimal period for hamiltonian systems in a potential well." Annales de l'I.H.P. Analyse non linéaire 4.3 (1987): 275-296. <http://eudml.org/doc/78132>.

@article{Ambrosetti1987,
author = {Ambrosetti, Antonio, Coti Zelati, Vittorio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {potential well; periodic solutions; Hamiltonian systems},
language = {eng},
number = {3},
pages = {275-296},
publisher = {Gauthier-Villars},
title = {Solutions with minimal period for hamiltonian systems in a potential well},
url = {http://eudml.org/doc/78132},
volume = {4},
year = {1987},
}

TY - JOUR
AU - Ambrosetti, Antonio
AU - Coti Zelati, Vittorio
TI - Solutions with minimal period for hamiltonian systems in a potential well
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1987
PB - Gauthier-Villars
VL - 4
IS - 3
SP - 275
EP - 296
LA - eng
KW - potential well; periodic solutions; Hamiltonian systems
UR - http://eudml.org/doc/78132
ER -

References

top
  1. [1] A. Ambrosetti, Nonlinear Oscillatiations with Minimal Period, Proceed. Symp. Pure Math., Vol. 44, 1985 pp. 29-35. Zbl0666.58020MR843546
  2. [2] A. Ambrosetti and G. Mancini, Solutions of Minimal Period for a Class of Convex Hamiltonian Systems, Math. Ann., Vol. 255, 1981, pp. 405-421. Zbl0466.70022MR615860
  3. [3] A. Ambrosetti and P. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal., Vol. 14, 1973, pp. 349-381. Zbl0273.49063MR370183
  4. [4] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984. Zbl0641.47066MR749753
  5. [5] V. Benci, Normal Modes of a Lagrangian System Constrained in a Potential Well, Ann. LH.P. "Analyse non lineare", Vol. 1, 1984, pp. 379-400. Zbl0561.58006MR779875
  6. [6] F. Clarke, Periodic Solutions of Hamiltonian Inclusions, J. Diff. Eq., Vol. 40, 1981, pp. 1-6. Zbl0461.34030MR614215
  7. [7] F. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. Zbl0582.49001MR709590
  8. [8] F. Clarke and I. Ekeland, Hamiltonian Trajectories having Prescribed Minimal Period, Comm. Pure and Appl. Math., Vol. 33, 1980, pp. 103-116. Zbl0403.70016MR562546
  9. [9] I. Ekeland, Periodic Solutions to Hamiltonian Equations and a Theorem od P. Rabinowitz, J. Diff. Eq., Vol. 34, 1979, pp. 523-534. Zbl0446.70019MR555325
  10. [10] I. Ekeland, Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. I.H.P. "Analyse non lineare", Vol. 1, 1984, pp. 19-78. Zbl0537.58018MR738494
  11. [11] I. Ekeland and H. Hofer, Periodic Solutions with Prescribed Period for Convex Autonomous Hamiltonian Systems, Inv. Math.81 (1985), pp. 155-188). Zbl0594.58035MR796195
  12. [12] M. Girardi and M. Matzeu, Periodic Solutions of Convex Hamiltonian Systems with a Quadratic Growth at the Origin and Superquadratic at Infinity, preprint, Univ. degli Studi di Roma, Roma, 1985. Zbl0631.58014MR1026157
  13. [13] M. Girardi and M. Matzeu, Some Results on Solutions of Minimal Period to Hamiltonian Systems, in Nonlinear Oscillations for Conservative Systems, A. AMBROSETTI Ed., Pitagora, Bologna, 1985, pp. 27-35. Zbl0596.70014
  14. [14] A. Kufner, O. John and S. Fucik, Function Spaces, Academia, Prague, 1977. Zbl0364.46022MR482102
  15. [15] P. Rabinowitz, Periodic Solutions of Hamiltonian Systems, Comm. Pure and Appl. Math., Vol. 31, 1978, pp. 157-184. Zbl0358.70014MR467823
  16. [16] P. Rabinowitz, Periodic Solutions of Hamiltonian Systems: a Survey, S.I.A.M. J. Math. Anal., Vol. 13, 1982, pp. 343-352. Zbl0521.58028MR653462
  17. [17] J.J. Benedetto, Real Variable and Integration, B. G. Teubner, Stuttgart, 1976. Zbl0336.26001MR580297

Citations in EuDML Documents

top
  1. Marco Degiovanni, Fabio Giannoni, Dynamical systems with newtonian type potentials
  2. Marco Degiovanni, Fabio Giannoni, Antonio Marino, Dynamical systems with Newtonian type potentials
  3. Marco Degiovanni, Fabio Giannoni, Antonio Marino, Dynamical systems with Newtonian type potentials
  4. Patricio L. Felmer, Elves A. de B. Silva, Homoclinic and periodic orbits for hamiltonian systems
  5. Vittorio Coti Zelati, Ivar Ekeland, Pierre-Louis Lions, Index estimates and critical points of functionals not satisfying Palais-Smale
  6. Yiming Long, The minimal period problem of classical hamiltonian systems with even potentials

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.