Solutions with minimal period for hamiltonian systems in a potential well
Antonio Ambrosetti; Vittorio Coti Zelati
Annales de l'I.H.P. Analyse non linéaire (1987)
- Volume: 4, Issue: 3, page 275-296
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAmbrosetti, Antonio, and Coti Zelati, Vittorio. "Solutions with minimal period for hamiltonian systems in a potential well." Annales de l'I.H.P. Analyse non linéaire 4.3 (1987): 275-296. <http://eudml.org/doc/78132>.
@article{Ambrosetti1987,
author = {Ambrosetti, Antonio, Coti Zelati, Vittorio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {potential well; periodic solutions; Hamiltonian systems},
language = {eng},
number = {3},
pages = {275-296},
publisher = {Gauthier-Villars},
title = {Solutions with minimal period for hamiltonian systems in a potential well},
url = {http://eudml.org/doc/78132},
volume = {4},
year = {1987},
}
TY - JOUR
AU - Ambrosetti, Antonio
AU - Coti Zelati, Vittorio
TI - Solutions with minimal period for hamiltonian systems in a potential well
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1987
PB - Gauthier-Villars
VL - 4
IS - 3
SP - 275
EP - 296
LA - eng
KW - potential well; periodic solutions; Hamiltonian systems
UR - http://eudml.org/doc/78132
ER -
References
top- [1] A. Ambrosetti, Nonlinear Oscillatiations with Minimal Period, Proceed. Symp. Pure Math., Vol. 44, 1985 pp. 29-35. Zbl0666.58020MR843546
- [2] A. Ambrosetti and G. Mancini, Solutions of Minimal Period for a Class of Convex Hamiltonian Systems, Math. Ann., Vol. 255, 1981, pp. 405-421. Zbl0466.70022MR615860
- [3] A. Ambrosetti and P. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal., Vol. 14, 1973, pp. 349-381. Zbl0273.49063MR370183
- [4] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984. Zbl0641.47066MR749753
- [5] V. Benci, Normal Modes of a Lagrangian System Constrained in a Potential Well, Ann. LH.P. "Analyse non lineare", Vol. 1, 1984, pp. 379-400. Zbl0561.58006MR779875
- [6] F. Clarke, Periodic Solutions of Hamiltonian Inclusions, J. Diff. Eq., Vol. 40, 1981, pp. 1-6. Zbl0461.34030MR614215
- [7] F. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. Zbl0582.49001MR709590
- [8] F. Clarke and I. Ekeland, Hamiltonian Trajectories having Prescribed Minimal Period, Comm. Pure and Appl. Math., Vol. 33, 1980, pp. 103-116. Zbl0403.70016MR562546
- [9] I. Ekeland, Periodic Solutions to Hamiltonian Equations and a Theorem od P. Rabinowitz, J. Diff. Eq., Vol. 34, 1979, pp. 523-534. Zbl0446.70019MR555325
- [10] I. Ekeland, Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. I.H.P. "Analyse non lineare", Vol. 1, 1984, pp. 19-78. Zbl0537.58018MR738494
- [11] I. Ekeland and H. Hofer, Periodic Solutions with Prescribed Period for Convex Autonomous Hamiltonian Systems, Inv. Math.81 (1985), pp. 155-188). Zbl0594.58035MR796195
- [12] M. Girardi and M. Matzeu, Periodic Solutions of Convex Hamiltonian Systems with a Quadratic Growth at the Origin and Superquadratic at Infinity, preprint, Univ. degli Studi di Roma, Roma, 1985. Zbl0631.58014MR1026157
- [13] M. Girardi and M. Matzeu, Some Results on Solutions of Minimal Period to Hamiltonian Systems, in Nonlinear Oscillations for Conservative Systems, A. AMBROSETTI Ed., Pitagora, Bologna, 1985, pp. 27-35. Zbl0596.70014
- [14] A. Kufner, O. John and S. Fucik, Function Spaces, Academia, Prague, 1977. Zbl0364.46022MR482102
- [15] P. Rabinowitz, Periodic Solutions of Hamiltonian Systems, Comm. Pure and Appl. Math., Vol. 31, 1978, pp. 157-184. Zbl0358.70014MR467823
- [16] P. Rabinowitz, Periodic Solutions of Hamiltonian Systems: a Survey, S.I.A.M. J. Math. Anal., Vol. 13, 1982, pp. 343-352. Zbl0521.58028MR653462
- [17] J.J. Benedetto, Real Variable and Integration, B. G. Teubner, Stuttgart, 1976. Zbl0336.26001MR580297
Citations in EuDML Documents
top- Marco Degiovanni, Fabio Giannoni, Dynamical systems with newtonian type potentials
- Marco Degiovanni, Fabio Giannoni, Antonio Marino, Dynamical systems with Newtonian type potentials
- Marco Degiovanni, Fabio Giannoni, Antonio Marino, Dynamical systems with Newtonian type potentials
- Patricio L. Felmer, Elves A. de B. Silva, Homoclinic and periodic orbits for hamiltonian systems
- Vittorio Coti Zelati, Ivar Ekeland, Pierre-Louis Lions, Index estimates and critical points of functionals not satisfying Palais-Smale
- Yiming Long, The minimal period problem of classical hamiltonian systems with even potentials
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.