The existence of Ginzburg-Landau solutions on the plane by a direct variational method

Yisong Yang

Annales de l'I.H.P. Analyse non linéaire (1994)

  • Volume: 11, Issue: 5, page 517-536
  • ISSN: 0294-1449

How to cite

top

Yang, Yisong. "The existence of Ginzburg-Landau solutions on the plane by a direct variational method." Annales de l'I.H.P. Analyse non linéaire 11.5 (1994): 517-536. <http://eudml.org/doc/78342>.

@article{Yang1994,
author = {Yang, Yisong},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {minimization; Ginzburg-Landau equations; Sobolev inequality; modified energy; Ginzburg-Landau energy},
language = {eng},
number = {5},
pages = {517-536},
publisher = {Gauthier-Villars},
title = {The existence of Ginzburg-Landau solutions on the plane by a direct variational method},
url = {http://eudml.org/doc/78342},
volume = {11},
year = {1994},
}

TY - JOUR
AU - Yang, Yisong
TI - The existence of Ginzburg-Landau solutions on the plane by a direct variational method
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1994
PB - Gauthier-Villars
VL - 11
IS - 5
SP - 517
EP - 536
LA - eng
KW - minimization; Ginzburg-Landau equations; Sobolev inequality; modified energy; Ginzburg-Landau energy
UR - http://eudml.org/doc/78342
ER -

References

top
  1. [B] M.S. Berger, Nonlinearity and Functional Analysis, Academic, New York, 1977. Zbl0368.47001MR488101
  2. [BC] M.S. Berger, Y.Y. Chen, Symmetric Vortices for the Ginzburg-Landau Equations and the Nonlinear Desingularization Phenomenon, J. Funct. Anal., Vol. 82, 259-295, 1989. Zbl0685.46051MR987294
  3. [Bo] E.B. Bogomol'nyi, The Stability of Classical Solutions, Sov. J. Nucl. Phys., Vol. 24, 449-454, 1976. MR443719
  4. [DH] P.H. Damgaard, U.M. Heller, Observations of the Meissner Effect in the Lattice Higgs Model, Phys. Rev. Lett., Vol. 60, 1246-1249, 1988. 
  5. [GT] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin and New York, 1977. Zbl0361.35003MR473443
  6. [GL] V.L. Ginzburg, L.D. Landau, On the Theory of Superconductivity, in Collected Papers of L. D. Landau, D. ter Haar, ed., Pergamon, New York, 1965, 546-568. 
  7. [HKP] J. Hong, Y. Kim, P.Y. Pac, Multivortex Solutions of the Abelian Chern-Simons Theory, Phys. Rev. Lett., Vol. 64, 2230-2233, 1990. Zbl1014.58500MR1050529
  8. [JLW] R. Jackiw, K. Lee, E.J. Weinberg, Self-dual Chern-Simons Solitons, Phys. Rev. D., Vol. 42, 3488-3499, 1990. MR1084551
  9. [JW] R. Jackiw, E.J. Weinberg, Self-dual Chern-Simons Vortices, Phys. Rev. Lett., Vol. 64, 2234-2237, 1990. Zbl1050.81595MR1050530
  10. [JT] A. Jaffe, C.H. Taubes, Vortices and Monopoles, Birkhäuser, Boston, 1980. Zbl0457.53034MR614447
  11. [L] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969. Zbl0184.52603MR254401
  12. [P] B.J. Plohr, Ph.D. Thesis, Princeton University, 1980. 
  13. [SY] J. Spruck, Y. Yang, The Existence of Non-Topological Solitons in the Self-Dual Chern-Simons Theory, Commun. Math. Phys., Vol. 149, 361-376, 1992. Zbl0760.53063MR1186034
  14. [T1] C.H. Taubes, Arbitrary N-vortex Solutions to the First Order Ginzburg-Landau Equations, Commun. Math. Phys., Vol. 72, 277-292, 1980. Zbl0451.35101MR573986
  15. [T2] C.H. Taubes, On the Equivalence of the First and Second Order Equations for Gauge Theories, Commun. Math. Phys., Vol. 75, 207-227, 1980. Zbl0448.58029MR581946
  16. [Y1] Y. Yang, Existence, Regularity, and Asymptotic Behavior of the Solutions to the Ginzburg-Landau Equations on R3, Commun. Math. Phys., Vol. 123, 147-161, 1989. Zbl0678.35086MR1002036
  17. [Y2] Y. Yang, On the Abelian Higgs models with sources, J. Math. Pures et Appl., Vol. 70, 325-344, 1991. Zbl0662.35115MR1113815

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.