On subsemigroups of semisimple Lie groups

R. El Assoudi; J. P. Gauthier; I. A. K. Kupka

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 1, page 117-133
  • ISSN: 0294-1449

How to cite

top

El Assoudi, R., Gauthier, J. P., and Kupka, I. A. K.. "On subsemigroups of semisimple Lie groups." Annales de l'I.H.P. Analyse non linéaire 13.1 (1996): 117-133. <http://eudml.org/doc/78373>.

@article{ElAssoudi1996,
author = {El Assoudi, R., Gauthier, J. P., Kupka, I. A. K.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {regular element; roots of a Lie algebra; Lie group; Lie algebra; affine control systems; controllability},
language = {eng},
number = {1},
pages = {117-133},
publisher = {Gauthier-Villars},
title = {On subsemigroups of semisimple Lie groups},
url = {http://eudml.org/doc/78373},
volume = {13},
year = {1996},
}

TY - JOUR
AU - El Assoudi, R.
AU - Gauthier, J. P.
AU - Kupka, I. A. K.
TI - On subsemigroups of semisimple Lie groups
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 1
SP - 117
EP - 133
LA - eng
KW - regular element; roots of a Lie algebra; Lie group; Lie algebra; affine control systems; controllability
UR - http://eudml.org/doc/78373
ER -

References

top
  1. [1] B. Bonnard, V. Jurdjevic, I. Kupka and G. Sallet, Transitivity of families of invariant vector fields on the semi-direct products of Lie groups, Trans. Amer. Math. Soc., 1981. Zbl0519.49023
  2. [2] N. Bourbaki, Groupes et algèbres de Lie, Fasc. XXXVIII, chap. 7-8, Hermann, Paris, 1975. Zbl0329.17002MR453824
  3. [3] R. El Assoudi,Accessibilité par des champs de vecteurs invariants à droite sur un groupe de Lie, Thèse de doctorat de l'Université Joseph Fourier, Grenoble, 1991. 
  4. [4] R. El Assoudi and J.P. Gauthier, Controllability of right invariant systems on real simple Lie groups of type F4, G2, Bn and Cn, Math. on Control signals systems, Vol. 1, 1988, pp. 293-301. Zbl0672.93009MR961799
  5. [5] J.P. Gauthier and G. Bornard, Controllabilité des systèmes bilinéaires, SIAM Journal on Control and Optimization, Vol. 20, (3), 1982, pp. 377-384. Zbl0579.93005MR652214
  6. [6] J.P. Gauthier, I. Kupka and G. Sallet, Controllability of right invariant systems on real simple Lie groups, Systems and control Letters, Vol. 5, 1984, pp. 187-190. Zbl0552.93010MR777851
  7. [7] S. Helgason, Differential geometry and symmetric spaces, Academic press, New York, 1962. Zbl0111.18101MR145455
  8. [8] J. Hilgert, Max. semigroups and controllability in products of Lie Groups, Archiv der Math., Vol. 49, 1987, pp. 189-195. Zbl0649.22003MR906732
  9. [9] J. Hilgert, K. Hoffman and J.D. Lawson, Controllability of systems on a nilpotent Lie Group, Beiträge Alg. Geom., Vol. 30, 1985, pp. 185-190. Zbl0579.22010MR803388
  10. [10] J. Hilgert, K. Hoffman and J.D. Lawson, Lie theory of semigroups, Technische HochschuleDarmstadt, Preprint, 1987. 
  11. [11] A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sc. de l'École Normale Sup., 4e série, Vol. 9 (1), 1976, pp. 1-29. Zbl0346.17008MR404366
  12. [12] V. Jurdjevic and I. Kupka, Controllability of right invariant systems on semi-simple Lie-Groups and their homogeneous spaces, Ann. Inst. Fourier, Grenoble, Vol. 31 (4), 1981, pp. 151-179. Zbl0453.93011
  13. [13] M. Kuranishi, On everywhere dense imbedding of free groups in Lie groups, Nagoya Math. Journal, Vol. 2, 1951, pp. 63-71. Zbl0045.31003MR41145
  14. [14] J.D. Lawson, Maximal subsemigroups of Lie Groups that are total, Proc. of Edimborough Math. Soc., Vol. 30, 1987, pp. 479-501. Zbl0649.22004MR908455
  15. [15] F.S. Leite, P.E. Crouch, Controllability on classical Lie Groups, Math. on Control, signals, systems, Vol. 1, 1988, pp. 31-42. Zbl0658.93013MR923274
  16. [16] G. Warner, Harmonic analysis on semi-simple Lie groups 1, Springer-Verlag, Berlin, 1972. Zbl0265.22020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.