On subsemigroups of semisimple Lie groups
R. El Assoudi; J. P. Gauthier; I. A. K. Kupka
Annales de l'I.H.P. Analyse non linéaire (1996)
- Volume: 13, Issue: 1, page 117-133
- ISSN: 0294-1449
Access Full Article
topHow to cite
topEl Assoudi, R., Gauthier, J. P., and Kupka, I. A. K.. "On subsemigroups of semisimple Lie groups." Annales de l'I.H.P. Analyse non linéaire 13.1 (1996): 117-133. <http://eudml.org/doc/78373>.
@article{ElAssoudi1996,
author = {El Assoudi, R., Gauthier, J. P., Kupka, I. A. K.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {regular element; roots of a Lie algebra; Lie group; Lie algebra; affine control systems; controllability},
language = {eng},
number = {1},
pages = {117-133},
publisher = {Gauthier-Villars},
title = {On subsemigroups of semisimple Lie groups},
url = {http://eudml.org/doc/78373},
volume = {13},
year = {1996},
}
TY - JOUR
AU - El Assoudi, R.
AU - Gauthier, J. P.
AU - Kupka, I. A. K.
TI - On subsemigroups of semisimple Lie groups
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 1
SP - 117
EP - 133
LA - eng
KW - regular element; roots of a Lie algebra; Lie group; Lie algebra; affine control systems; controllability
UR - http://eudml.org/doc/78373
ER -
References
top- [1] B. Bonnard, V. Jurdjevic, I. Kupka and G. Sallet, Transitivity of families of invariant vector fields on the semi-direct products of Lie groups, Trans. Amer. Math. Soc., 1981. Zbl0519.49023
- [2] N. Bourbaki, Groupes et algèbres de Lie, Fasc. XXXVIII, chap. 7-8, Hermann, Paris, 1975. Zbl0329.17002MR453824
- [3] R. El Assoudi,Accessibilité par des champs de vecteurs invariants à droite sur un groupe de Lie, Thèse de doctorat de l'Université Joseph Fourier, Grenoble, 1991.
- [4] R. El Assoudi and J.P. Gauthier, Controllability of right invariant systems on real simple Lie groups of type F4, G2, Bn and Cn, Math. on Control signals systems, Vol. 1, 1988, pp. 293-301. Zbl0672.93009MR961799
- [5] J.P. Gauthier and G. Bornard, Controllabilité des systèmes bilinéaires, SIAM Journal on Control and Optimization, Vol. 20, (3), 1982, pp. 377-384. Zbl0579.93005MR652214
- [6] J.P. Gauthier, I. Kupka and G. Sallet, Controllability of right invariant systems on real simple Lie groups, Systems and control Letters, Vol. 5, 1984, pp. 187-190. Zbl0552.93010MR777851
- [7] S. Helgason, Differential geometry and symmetric spaces, Academic press, New York, 1962. Zbl0111.18101MR145455
- [8] J. Hilgert, Max. semigroups and controllability in products of Lie Groups, Archiv der Math., Vol. 49, 1987, pp. 189-195. Zbl0649.22003MR906732
- [9] J. Hilgert, K. Hoffman and J.D. Lawson, Controllability of systems on a nilpotent Lie Group, Beiträge Alg. Geom., Vol. 30, 1985, pp. 185-190. Zbl0579.22010MR803388
- [10] J. Hilgert, K. Hoffman and J.D. Lawson, Lie theory of semigroups, Technische HochschuleDarmstadt, Preprint, 1987.
- [11] A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sc. de l'École Normale Sup., 4e série, Vol. 9 (1), 1976, pp. 1-29. Zbl0346.17008MR404366
- [12] V. Jurdjevic and I. Kupka, Controllability of right invariant systems on semi-simple Lie-Groups and their homogeneous spaces, Ann. Inst. Fourier, Grenoble, Vol. 31 (4), 1981, pp. 151-179. Zbl0453.93011
- [13] M. Kuranishi, On everywhere dense imbedding of free groups in Lie groups, Nagoya Math. Journal, Vol. 2, 1951, pp. 63-71. Zbl0045.31003MR41145
- [14] J.D. Lawson, Maximal subsemigroups of Lie Groups that are total, Proc. of Edimborough Math. Soc., Vol. 30, 1987, pp. 479-501. Zbl0649.22004MR908455
- [15] F.S. Leite, P.E. Crouch, Controllability on classical Lie Groups, Math. on Control, signals, systems, Vol. 1, 1988, pp. 31-42. Zbl0658.93013MR923274
- [16] G. Warner, Harmonic analysis on semi-simple Lie groups 1, Springer-Verlag, Berlin, 1972. Zbl0265.22020
Citations in EuDML Documents
top- Ugo Boscain, Grégoire Charlot, Resonance of minimizers for n-level quantum systems with an arbitrary cost
- Ugo Boscain, Grégoire Charlot, Resonance of minimizers for -level quantum systems with an arbitrary cost
- Andrei Agrachev, Thomas Chambrion, An estimation of the controllability time for single-input systems on compact Lie Groups
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.