Resonance of minimizers for n-level quantum systems with an arbitrary cost
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 10, Issue: 4, page 593-614
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag, EMS (2004) 1-410.
- A.A. Agrachev and A.V. Sarychev, Sub-Riemannian metrics: minimality of abnormal geodesics versus subanaliticity. ESAIM: COCV2 (1997) 377-448.
- C. Altafini, Controllability of quantum mechanical systems by root space decomposition of . J. Math. Phys.43 (2002) 2051-2062.
- R. El Assoudi, J.P. Gauthier and I.A.K. Kupka, On subsemigroups of semisimple Lie groups. Ann. Inst. H. Poincaré Anal. Non Linéaire13 (1996) 117-133.
- A. Bellaiche, The tangent space in sub-Riemannian geometry. Sub-Riemannian geometry. Progr. Math.144 (1996) 1-78.
- K. Bergmann, H. Theuer and B.W. Shore, Coerent population transfer among quantum states of atomes and molecules. Rev. Mod. Phys. 70 (1998) 1003-1025.
- V.G. Boltyanskii, Sufficient Conditions for Optimality and the Justification of the Dynamics Programming Principle. SIAM J. Control Optim.4 (1996) 326-361.
- B. Bonnard and M. Chyba, The Role of Singular Trajectories in Control Theory. Springer, SMAI, Vol. 40 (2003).
- U. Boscain and B Piccoli, Optimal Synthesis for Control Systems on 2-D Manifolds. Springer, SMAI, Vol. 43 (2004).
- U. Boscain, G. Charlot, J.-P. Gauthier, S. Guérin and H.-R. Jauslin, Optimal Control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys.43 (2002) 2107-2132.
- U. Boscain, T. Chambrion and J.-P. Gauthier, On the K+P problem for a three-level quantum system: Optimality implies resonance. J. Dyn. Control Syst.8 (2002) 547-572.
- U. Boscain, T. Chambrion and J.-P. Gauthier, Optimal Control on a n-level Quantum System, in Proc. of the 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Astolfi, Gordillo and van der Schaft Eds., Elsevier (2003).
- W.M. Boothby and E.N. Wilson, Determination of the transitivity of bilinear systems. SIAM J. Control Optim. 17 (1979) 212-221.
- P. Brunovsky, Existence of Regular Syntheses for General Problems. J. Differ. Equations38 (1980) 317-343.
- P. Brunovsky, Every Normal Linear System Has a Regular Time-Optimal Synthesis. Math. Slovaca28 (1978) 81-100.
- D. D'Alessandro and M. Dahleh, Optimal control of two-level quantum systems. IEEE Trans. Automat. Control46 (2001) 866-876.
- U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kulz and K. Bergmann, Population switching between vibrational levels in molecular beams. Chem. Phys. Lett. 149 (1988) 463.
- J.P. Gauthier and G. Bornard, Controlabilite des sytemes bilineaires. SIAM J. Control Optim.20 (1982) 377-384.
- M. Gromov, Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry. Progr. Math.144 (1996) 79-323.
- R.G. Hulet and D. Kleppner, Rydberg Atoms in “Circular” states. Phys. Rev. Lett.51 (1983) 1430-1433.
- V. Jurdjevic, Geometric Control Theory. Cambridge University Press (1997).
- V. Jurdjevic and I.K. Kupka, Control Systems on Semisimple Lie Groups and Their Homogeneous Spaces. Ann. Inst. Fourier31 (1981) 151-179.
- V. Jurdjevic and H.J. Sussmann, Controllability of Non-Linear systems. J. Differ. Equation12 95-116.
- N. Khaneja, R. Brockett and S.J. Glaser, Time optimal control in spin systems. Phys. Rev. A63 (2001).
- N. Khaneja and S.J. Glaser, Cartan decomposition of SU(n) and Control of Spin Systems. J. Chem. Phys.267 (2001) 11-23.
- C. Liedenbaum, S. Stolte and J. Reuss, Inversion produced and reversed by adiabatic passage. Phys. Rep.178 (1989) 1-24.
- R. Montgomery, A Tour of Subriemannian Geometry. American Mathematical Society, Mathematical Surveys and Monographs (2002).
- R. Montgomery, A survey of singular curves in sub-Riemannian geometry. J. Dyn. Control Syst.1 (1995) 49-90.
- B. Piccoli, Classifications of Generic Singularities for the Planar Time-Optimal Synthesis. SIAM J. Control Optim.34 (1996) 1914-1946.
- B. Piccoli and H.J. Sussmann, Regular Synthesis and Sufficiency Conditions for Optimality. SIAM. J. Control Optim. 39 (2000) 359-410.
- L.S. Pontryagin, V. Boltianski, R. Gamkrelidze and E. Mitchtchenko, The Mathematical Theory of Optimal Processes. John Wiley and Sons, Inc (1961).
- M.A. Daleh, A.M. Peirce and H. Rabitz, Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. Phys. Rev. A37 (1988).
- V. Ramakrishna, K.L. Flores, H. Rabitz and R.Ober, Quantum control by decomposition of su(2). Phys. Rev. A62 (2000).
- Y. Sachkov, Controllability of Invariant Systems on Lie Groups and Homogeneous Spaces. J. Math. Sci.100 (2000) 2355-2427.
- B.W. Shore, The theory of coherent atomic excitation. New York, NY, Wiley (1990).
- H.J. Sussmann, The Structure of Time-Optimal Trajectories for Single-Input Systems in the Plane: the Nonsingular Case. SIAM J. Control Optim.25 (1987) 433-465.