On a superlinear elliptic equation

Zhi Qiang Wang

Annales de l'I.H.P. Analyse non linéaire (1991)

  • Volume: 8, Issue: 1, page 43-57
  • ISSN: 0294-1449

How to cite

top

Wang, Zhi Qiang. "On a superlinear elliptic equation." Annales de l'I.H.P. Analyse non linéaire 8.1 (1991): 43-57. <http://eudml.org/doc/78244>.

@article{Wang1991,
author = {Wang, Zhi Qiang},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {superlinear; subcritical growth; Dirichlet problem; three nontrivial solutions},
language = {eng},
number = {1},
pages = {43-57},
publisher = {Gauthier-Villars},
title = {On a superlinear elliptic equation},
url = {http://eudml.org/doc/78244},
volume = {8},
year = {1991},
}

TY - JOUR
AU - Wang, Zhi Qiang
TI - On a superlinear elliptic equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 1
SP - 43
EP - 57
LA - eng
KW - superlinear; subcritical growth; Dirichlet problem; three nontrivial solutions
UR - http://eudml.org/doc/78244
ER -

References

top
  1. [1] A. Ambrosetti and P.H. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal., Vol. 14, 1973, pp. 349-381. Zbl0273.49063MR370183
  2. [2] A. Bahri and H. Berestycki, A Perturbation Method in Critical Point Theory and Applications, Trans. Am. Math. Soc., Vol. 267, 1981, pp. 1-32. Zbl0476.35030MR621969
  3. [3] A. Bahri and P.L. Lions, Morse Index of Some Min-Max CriticalPoints. I. Application to Multiplicity Results, preprint. Zbl0645.58013
  4. [4] V. Benci, Some Applications of the Generalized Morse-Conley Index, preprint. MR898735
  5. [5] K.C. Chang, Morse Theory and its Applications to PDE, Séminaire Mathématiques supérieures, Univ. de Montreal. 
  6. [6] M.J. Greenberg, Lectures on Algebraic Topology, W. A. BENJAMIN, Inc., New York, 1967. Zbl0169.54403MR215295
  7. [7] D. Gromoll and W. Meyer, On Differentiable Functions with Isolated CriticalPoints, Topology, Vol. 8, 1969, pp. 361-369. Zbl0212.28903MR246329
  8. [8] H. Hofer, A. Noteon the Topological Degree at a Critical Point of Mountainpass-Type, Proc. Am. Math. Soc., Vol. 90, 1984, pp. 309-315. Zbl0545.58015MR727256
  9. [9] P. Hess and T. Kato, On Some Linear and Nonlinear Eigenvalue Problems with an Indefinite Weight Function, Comm. P.D.E., Vol. 5 (10), pp. 999-1030. Zbl0477.35075MR588690
  10. [10] H. Jacobowitz, Periodic Solution of x+g(t,x)=0 via the Poincaré-Birkhoff Theorem, J. Diff. Eq., Vol. XX, 1976, pp. 37-52. Zbl0285.34028MR393673
  11. [11] S. Li and Z. Q. Wang, An Abstract Critical Point Theorem and Applications, Acta Math. Sinica, Vol. 29, 1986, pp. 585-589. Zbl0633.58010MR876331
  12. [12] P.H. Rabinowitz, Some Aspects of Nonlinear Eigenvalue Problems, Rocky Mountain Math. J., 1972. Zbl0255.47069MR320850
  13. [13] P.H. Rabinowitz, Multiple Critical Points of Perturbed Symmetric Functionals, Trans. Am. Math. Soc., Vol. 272, 1982, pp. 753-769. Zbl0589.35004MR662065
  14. [14] M. Struwe, Three Nontrivial Solutions of Anticoercive Boundary Value Problems for the Pseudo-Laplace-Operator, J. Reine Ange. Math., Vol. 325, 1981, pp. 68-74. Zbl0456.35032MR618546
  15. [15] K. Tanaka, Morse Indices at Critical Points Related to the Symmetric Mountain Pass Theorem and Applications, Comm. in P.D.E., Vol. 14, 1989, pp. 99-128. Zbl0669.34035MR973271
  16. [16] G. Tian, On the Mountain Pass Theorem, Chinese Bull. Sc., Vol. 14, 1983, pp. 833-835. MR763434

Citations in EuDML Documents

top
  1. M. Conti, S. Terracini, G. Verzini, Nehari's problem and competing species systems
  2. Stanley Alama, Manuel Del Pino, Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking
  3. Dimitri Mugnai, Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue
  4. Thomas Bartsch, Tobias Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology
  5. Dimitri Mugnai, Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue
  6. Antonio Ambrosetti, Critical points and nonlinear variational problems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.