Remarks on W 1 , p -stability of the conformal set in higher dimensions

Baisheng Yan

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 6, page 691-705
  • ISSN: 0294-1449

How to cite

top

Yan, Baisheng. "Remarks on $W^{1,p}$-stability of the conformal set in higher dimensions." Annales de l'I.H.P. Analyse non linéaire 13.6 (1996): 691-705. <http://eudml.org/doc/78397>.

@article{Yan1996,
author = {Yan, Baisheng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {6},
pages = {691-705},
publisher = {Gauthier-Villars},
title = {Remarks on $W^\{1,p\}$-stability of the conformal set in higher dimensions},
url = {http://eudml.org/doc/78397},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Yan, Baisheng
TI - Remarks on $W^{1,p}$-stability of the conformal set in higher dimensions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 6
SP - 691
EP - 705
LA - eng
UR - http://eudml.org/doc/78397
ER -

References

top
  1. [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal., Vol. 86, 1984, pp. 125-145. Zbl0565.49010MR751305
  2. [2] J.M. Ball, A version of the fundamental theorem for Young measures, in "Partial Differential Equations and Continuum Models of Phase Transitions," (M. Rascle, D. Serre and M. Slemrod eds.), Lecture Notes in Physics, Vol. 344, Springer-Verlag, Berlin, Heidelberg, New York, 1988. Zbl0991.49500MR1036070
  3. [3] J.M. Ball, Sets of gradients with no rank-one connections, J. math. pures et appl., Vol. 69, 1990, pp. 241-259. Zbl0644.49011MR1070479
  4. [4] J.M. Ball and F. Murat, W1,p-Quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., Vol. 58, 1984, pp. 225-253. Zbl0549.46019MR759098
  5. [5] J.M. Ball and F. Murat, Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., Vol. 3, 1989, pp. 655-663. Zbl0678.46023MR984807
  6. [6] J.M. Ball and K. Zhang, Lower semicontinuity of multiple integrals and the Biting Lemma, Proc. Roy. Soc. Edinburgh, Vol. 114A, 1990, pp. 367-379. Zbl0716.49011MR1055554
  7. [7] K. Bhattacharya, N. Firoozye, R. James and R. Kohn, Restrictions on microstructure, Proc. Roy. Soc. Edin., A, Vol. 124, 1994, pp. 843-878. Zbl0808.73063MR1303758
  8. [8] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, New York, 1989. Zbl0703.49001MR990890
  9. [9] L.C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS, Vol. 74, 1992. 
  10. [10] L.C. Evans and R.F. Gariepy, Some remarks on quasiconvexity and strong convergence, Proc. Roy. Soc. Edinburg, Ser. A, Vol. 106, 1987, pp. 53-61. Zbl0628.49011MR899940
  11. [11] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, 1983. Zbl0516.49003MR717034
  12. [12] T. Iwaniec, On Lp-integrability in PDE's and quasiregular mappings for large exponents, Ann. Acad. Sci. Fenn., Ser. A.I., Vol. 7, 1982, pp. 301-322. Zbl0505.30011MR686647
  13. [13] T. Iwaniec, p-Harmonic tensors and quasiregular mappings, Ann. Math., Vol. 136, 1992, pp. 589-624. Zbl0785.30009MR1189867
  14. [14] T. Iwaniec and G. Martin, Quasiregular mappings in even dimensions, Acta Math., Vol. 170, 1993, pp. 29-81. Zbl0785.30008MR1208562
  15. [15] T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. rein angew. Math., Vol. 454, 1994, pp. 143-161. Zbl0802.35016MR1288682
  16. [16] D. Kinderlehrer, Remarks about equilibrium configurations of crystals, In Material Instabilities in Continuum Mechanics, (J. M. Ball ed.), Oxford University Press, 1988. Zbl0850.73037MR970527
  17. [17] D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal., Vol. 4(1), 1994, pp. 59-90. Zbl0808.46046MR1274138
  18. [18] C.B. Jr. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, New York, 1966. Zbl0142.38701MR202511
  19. [19] S. Müller and V. Šverák, Attainment results for the two well problem by convex integration, 1993, preprint. Zbl0930.35038
  20. [20] S. Muller, V. Šverák and B. Yan, Sharp stability results for almost conformal maps in even dimensions, 1995, preprint. Zbl0966.35016
  21. [21] Yu.G. Reshetnyak, Space Mappings with Bounded Distortion, Transl. Math. Mono., AMS, Vol. 73, 1989. Zbl0667.30018MR994644
  22. [22] S. Rickman, Quasiregular Mappings, Springer-Verlag, Berlin, Heidelberg, New York, 1993. Zbl0816.30017MR1238941
  23. [23] V. Šverák, On regularity for the Monge-Ampère equation without convexity assumptions, Preprint, 1992. 
  24. [24] V. Šverák, On Tartar's conjecture, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 10(4), 1993, pp. 405-412. Zbl0820.35022MR1246459
  25. [25] L. Tartar, The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Equations, (J. M. Ball ed.), NATO ASI Series, Vol. CIII, D. Reidel, 1983. Zbl0536.35003MR725524
  26. [26] B. Yan, On quasiconvex hulls of sets of matrices and strong convergence of certain minimizing sequences, Preprint, 1993. 
  27. [27] B. Yan, On rank-one convex and polyconvex conformal energy functions with slow growth, 1994, preprint. MR1453286
  28. [28] K. Zhang, Biting theorems for Jacobians and their applications, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 7, 1990, pp. 345-365. Zbl0717.49012MR1067780
  29. [29] K. Zhang, A construction of quasiconvex functions with linear growth at infinity, Ann. Scuola Norm. Sup. Pisa, Vol. 19(3), 1992, pp. 313-326. Zbl0778.49015MR1205403
  30. [30] K. Zhang, Monge-Ampère equations and multiwell problems, 1993, preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.