Nontrivial periodic solutions for strong resonance hamiltonian systems
K. C. Chang; J. Q. Liu; M. J. Liu
Annales de l'I.H.P. Analyse non linéaire (1997)
- Volume: 14, Issue: 1, page 103-117
- ISSN: 0294-1449
Access Full Article
topHow to cite
topChang, K. C., Liu, J. Q., and Liu, M. J.. "Nontrivial periodic solutions for strong resonance hamiltonian systems." Annales de l'I.H.P. Analyse non linéaire 14.1 (1997): 103-117. <http://eudml.org/doc/78402>.
@article{Chang1997,
author = {Chang, K. C., Liu, J. Q., Liu, M. J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {strong resonance; nonautonomous Hamiltonian system; Maslov indices; nontrivial periodic solutions},
language = {eng},
number = {1},
pages = {103-117},
publisher = {Gauthier-Villars},
title = {Nontrivial periodic solutions for strong resonance hamiltonian systems},
url = {http://eudml.org/doc/78402},
volume = {14},
year = {1997},
}
TY - JOUR
AU - Chang, K. C.
AU - Liu, J. Q.
AU - Liu, M. J.
TI - Nontrivial periodic solutions for strong resonance hamiltonian systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 1
SP - 103
EP - 117
LA - eng
KW - strong resonance; nonautonomous Hamiltonian system; Maslov indices; nontrivial periodic solutions
UR - http://eudml.org/doc/78402
ER -
References
top- [AZ1] H. Amann and E. Zehnder, Nontrivial Solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Sc. Super. Pisa, CC. Sci., IV, Ser. 7, 1980, pp. 539-603. Zbl0452.47077MR600524
- [AZ2] H. Amann and E. Zehnder, Periodic solutions of asymptotically Hamiltonian systems, Manuscr. Math., Vol. 32, 1980, pp. 149-189. Zbl0443.70019MR592715
- [Ch1] K.C. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math., Vol. 34, 1981, pp. 693-712. Zbl0444.58008MR622618
- [Ch2] K.C. Chang, Applications of homology theory to some problems in differential equations, Nonlinear Func. Anal., (F.E. BROWDER Ed.), Proc. Symp. Pure Math., AMS, 1986, pp. 253-261. Zbl0597.58003MR843564
- [Ch3] K.C. Chang, On the homology method in the critical point theory, PDE and related subjects, (M. MIRANDA Ed.) Pitman, Vol. 269, 1992, pp. 59-77. Zbl0798.58012MR1190934
- [CL] K.C. Chang and J.Q. Liu, A strong resonance problem, Chinese Ann. of Math., Vol. 11B, 1990, pp. 191-210. Zbl0719.58012MR1062090
- [CZ] C. Conley and E. Zehnder, Morse type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math., Vol. 37, 1984, pp. 207-253. Zbl0559.58019MR733717
- [DL] Y.H. Ding and J.Q. Liu, Periodic solutions of asymptotically linear Hamiltonian systems, J. Sys. Sci. Math. Sci., Vol. 9, 1990, pp. 30-39. Zbl0659.34042MR994751
- [LL] S.J. Li and J.Q. Liu, Morse theory and asymptotically linear Hamiltonian systems, JDE78, 1989, pp. 53-73. Zbl0672.34037MR986153
- [Li] M.J. Liu, Morse theory for strong indefinite functional and applications, Thesis, Institute of System Science, Beijing, 1990.
- [Lo] Y.M. Long, Maslov index, degenerate critical points and asymptotically linear Hamiltonian systems, Science in China, Ser. A, Vol. 33, 1990, pp. 1409-1419. Zbl0736.58022MR1090484
- [LZ] Y.M. Long and E. Zehnder, Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, Stochastic Processes, Physics and Geometry, World Sci. Press, 1990, pp. 528-563. MR1124230
- [MP] A. Marino and G. Prodi, Metodi perturbativi nella teoria di Morse, Boll. Un. Mate. Italia, Suppl. Fasc. 3, 1975, pp. 1-32. Zbl0311.58006MR418150
- [Sa] A. Salvatore, Periodic solutions of asymptotically linear systems without symmetry, Rend. Sem. Mat. Univ., Padova, Vol. 74, 1985, pp. 147-161. Zbl0592.34030MR818724
- [Sz] A. Szulkin, Cohomology and Morse theory for strong indefinite functionals, MZ209, 1992, pp. 375-418. Zbl0735.58012MR1152264
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.