Periodic solutions of asymptotically linear systems without symmetry
Rendiconti del Seminario Matematico della Università di Padova (1985)
- Volume: 74, page 147-161
- ISSN: 0041-8994
Access Full Article
topHow to cite
topSalvatore, A.. "Periodic solutions of asymptotically linear systems without symmetry." Rendiconti del Seminario Matematico della Università di Padova 74 (1985): 147-161. <http://eudml.org/doc/107998>.
@article{Salvatore1985,
author = {Salvatore, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {first order differential equation; nonautonomous Hamiltonian system; spectrum; strong resonance},
language = {eng},
pages = {147-161},
publisher = {Seminario Matematico of the University of Padua},
title = {Periodic solutions of asymptotically linear systems without symmetry},
url = {http://eudml.org/doc/107998},
volume = {74},
year = {1985},
}
TY - JOUR
AU - Salvatore, A.
TI - Periodic solutions of asymptotically linear systems without symmetry
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1985
PB - Seminario Matematico of the University of Padua
VL - 74
SP - 147
EP - 161
LA - eng
KW - first order differential equation; nonautonomous Hamiltonian system; spectrum; strong resonance
UR - http://eudml.org/doc/107998
ER -
References
top- [1] H. Amann, Saddle points and multiple solutions of differential equations, Math. Z., 169 (1979), pp. 127-166. Zbl0414.47042MR550724
- [2] H. Amann - E. Zendher, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Sc. Nom. Sup. Pisa, 7 (1980), pp. 539-606. Zbl0452.47077MR600524
- [3] H. Amann - E. Zendher, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math., 32 (1980), pp. 149-189. Zbl0443.70019MR592715
- [4] P. Bartolo - V. Benci - D. Fortunato, Abstract critical point theorems and applications some nonlinear problems with strong resonance at infinity, J. of Nonlinear Anal. T.M.A., 7, 9 (1983), pp. 981-1012. Zbl0522.58012MR713209
- [5] N. Basile - M. Mininni, Multiple periodic solutions for a semilinear wave equation with nonmonotone nonlinearity, J. of Nonlinear Anal. T.M.A., to appear. Zbl0585.35058MR799887
- [6] V. Benci, A geometrical index for the group S1 and some applications to the study of periodic solutions of ordinary differential equations, Comm. Pure App. Math., 34 (1981), pp. 393-432. Zbl0447.34040MR615624
- [7] V. Benci, On the critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc., 274 (1982), pp. 533-572. Zbl0504.58014MR675067
- [8] V. Benci - A. CAPOZZI - D. FORTUNATO, Periodic solutions of Hamiltonian systems of prescribed period, Math. Research Center, Technical Summary Report n. 2508, Univ. of Wisconsin, Madison (1983). Zbl0525.70021
- [9] V. Benci - D. FORTUNATO, The dual method in critical point theory. Multiplicity results for indefinite functionals, Ann. Mat. Pura Appl., 32 (1982), pp. 215-242. Zbl0526.58013MR696044
- [10] V. Benci - P. H. RABINOWITZ, Critical point theorems for indefinite functionals, Inv. Math., 52 (1979), pp. 336-352. Zbl0465.49006MR537061
- [11] H. Brézis, Periodic solutions of nonlinear vibrating strings and duality principles, Proc. AMS Symposium on the Mathematical Heritage of H. Poincaré, Bloomington, April 1980, and Bull. Amer. Math. Soc. (1982). Zbl0537.35055MR703685
- [12] A. Capozzi, On subquadratic Hamiltonian systems, J. ofNonlinear Anal. T.M.A., 8 (1984), pp. 553-562. Zbl0534.34048MR746714
- [13] A. Capozzi - A. Salvatore, Periodic solutions for nonlinear problems with strong resonance at infinity, Comm. Math. Un. Car., 23, 3 (1982), pp. 415-425. Zbl0507.34035MR677851
- [14] A. Capozzi - A. Salvatore, Nonlinear problems with strong resonance at infinity: an abstract theorem and applications, Proc. R. Soc. Edinb., to appear. Zbl0572.47041MR785540
- [15] K.C. Chang, Solutions of asymptotically linear operator equations via Morse Theory, Comm. Pure Appl. Math., 34 (1981), pp. 693-712. Zbl0444.58008MR622618
- [16] C. Conley - E. Zendher, Morse-type index theory for flows and periodic solutions for Hamiltonian systems, Comm. Pure Appl. Math., 37 (1984), pp. 207-253. Zbl0559.58019MR733717
- [17] J.M. Coron, Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Ann., 262, 2 (1983), pp. 273-285. Zbl0489.35061MR690201
- [18] A. De Candia, Teoria dei punti critici in presenza di simmetrie ed applicazioni, Tesi di laurea, Università degli Studi diBari (1982).
- [19] I. Ekeland, Periodic solutions of Hamiltonian equations and a theorem of P. H. Rabinowitz, J. Diff. Eq., 34 (1979), pp. 523-534. Zbl0446.70019MR555325
- [20] H. Hofer, On the range of a wave operator with a nonmonotone nonlinearity, Math. Nach. (to appear). Zbl0505.35058
- [21] P.H. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math., 31 (1978), pp. 31-68. Zbl0341.35051MR470378
- [22] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), pp. 157-184. Zbl0358.70014MR467823
- [23] K. Thews, Nontrivial solutions of elliptic equations at resonance, Proc. R. Soc. Edinb., 85A (1980), pp. 119-129. Zbl0431.35040MR566069
- [24] M. Willem, Densité de l'image de la difference de deux opérateurs, C.R.A.S., 290 (1980), pp. 881-883. Zbl0436.47051MR580163
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.