Periodic solutions of asymptotically linear systems without symmetry

A. Salvatore

Rendiconti del Seminario Matematico della Università di Padova (1985)

  • Volume: 74, page 147-161
  • ISSN: 0041-8994

How to cite

top

Salvatore, A.. "Periodic solutions of asymptotically linear systems without symmetry." Rendiconti del Seminario Matematico della Università di Padova 74 (1985): 147-161. <http://eudml.org/doc/107998>.

@article{Salvatore1985,
author = {Salvatore, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {first order differential equation; nonautonomous Hamiltonian system; spectrum; strong resonance},
language = {eng},
pages = {147-161},
publisher = {Seminario Matematico of the University of Padua},
title = {Periodic solutions of asymptotically linear systems without symmetry},
url = {http://eudml.org/doc/107998},
volume = {74},
year = {1985},
}

TY - JOUR
AU - Salvatore, A.
TI - Periodic solutions of asymptotically linear systems without symmetry
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1985
PB - Seminario Matematico of the University of Padua
VL - 74
SP - 147
EP - 161
LA - eng
KW - first order differential equation; nonautonomous Hamiltonian system; spectrum; strong resonance
UR - http://eudml.org/doc/107998
ER -

References

top
  1. [1] H. Amann, Saddle points and multiple solutions of differential equations, Math. Z., 169 (1979), pp. 127-166. Zbl0414.47042MR550724
  2. [2] H. Amann - E. Zendher, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Sc. Nom. Sup. Pisa, 7 (1980), pp. 539-606. Zbl0452.47077MR600524
  3. [3] H. Amann - E. Zendher, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math., 32 (1980), pp. 149-189. Zbl0443.70019MR592715
  4. [4] P. Bartolo - V. Benci - D. Fortunato, Abstract critical point theorems and applications some nonlinear problems with strong resonance at infinity, J. of Nonlinear Anal. T.M.A., 7, 9 (1983), pp. 981-1012. Zbl0522.58012MR713209
  5. [5] N. Basile - M. Mininni, Multiple periodic solutions for a semilinear wave equation with nonmonotone nonlinearity, J. of Nonlinear Anal. T.M.A., to appear. Zbl0585.35058MR799887
  6. [6] V. Benci, A geometrical index for the group S1 and some applications to the study of periodic solutions of ordinary differential equations, Comm. Pure App. Math., 34 (1981), pp. 393-432. Zbl0447.34040MR615624
  7. [7] V. Benci, On the critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc., 274 (1982), pp. 533-572. Zbl0504.58014MR675067
  8. [8] V. Benci - A. CAPOZZI - D. FORTUNATO, Periodic solutions of Hamiltonian systems of prescribed period, Math. Research Center, Technical Summary Report n. 2508, Univ. of Wisconsin, Madison (1983). Zbl0525.70021
  9. [9] V. Benci - D. FORTUNATO, The dual method in critical point theory. Multiplicity results for indefinite functionals, Ann. Mat. Pura Appl., 32 (1982), pp. 215-242. Zbl0526.58013MR696044
  10. [10] V. Benci - P. H. RABINOWITZ, Critical point theorems for indefinite functionals, Inv. Math., 52 (1979), pp. 336-352. Zbl0465.49006MR537061
  11. [11] H. Brézis, Periodic solutions of nonlinear vibrating strings and duality principles, Proc. AMS Symposium on the Mathematical Heritage of H. Poincaré, Bloomington, April 1980, and Bull. Amer. Math. Soc. (1982). Zbl0537.35055MR703685
  12. [12] A. Capozzi, On subquadratic Hamiltonian systems, J. ofNonlinear Anal. T.M.A., 8 (1984), pp. 553-562. Zbl0534.34048MR746714
  13. [13] A. Capozzi - A. Salvatore, Periodic solutions for nonlinear problems with strong resonance at infinity, Comm. Math. Un. Car., 23, 3 (1982), pp. 415-425. Zbl0507.34035MR677851
  14. [14] A. Capozzi - A. Salvatore, Nonlinear problems with strong resonance at infinity: an abstract theorem and applications, Proc. R. Soc. Edinb., to appear. Zbl0572.47041MR785540
  15. [15] K.C. Chang, Solutions of asymptotically linear operator equations via Morse Theory, Comm. Pure Appl. Math., 34 (1981), pp. 693-712. Zbl0444.58008MR622618
  16. [16] C. Conley - E. Zendher, Morse-type index theory for flows and periodic solutions for Hamiltonian systems, Comm. Pure Appl. Math., 37 (1984), pp. 207-253. Zbl0559.58019MR733717
  17. [17] J.M. Coron, Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Ann., 262, 2 (1983), pp. 273-285. Zbl0489.35061MR690201
  18. [18] A. De Candia, Teoria dei punti critici in presenza di simmetrie ed applicazioni, Tesi di laurea, Università degli Studi diBari (1982). 
  19. [19] I. Ekeland, Periodic solutions of Hamiltonian equations and a theorem of P. H. Rabinowitz, J. Diff. Eq., 34 (1979), pp. 523-534. Zbl0446.70019MR555325
  20. [20] H. Hofer, On the range of a wave operator with a nonmonotone nonlinearity, Math. Nach. (to appear). Zbl0505.35058
  21. [21] P.H. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math., 31 (1978), pp. 31-68. Zbl0341.35051MR470378
  22. [22] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), pp. 157-184. Zbl0358.70014MR467823
  23. [23] K. Thews, Nontrivial solutions of elliptic equations at resonance, Proc. R. Soc. Edinb., 85A (1980), pp. 119-129. Zbl0431.35040MR566069
  24. [24] M. Willem, Densité de l'image de la difference de deux opérateurs, C.R.A.S., 290 (1980), pp. 881-883. Zbl0436.47051MR580163

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.