Liouville theorems and blow up behaviour in semilinear reaction diffusion systems
D. Andreucci; M. A. Herrero; J. J. L. Velázquez
Annales de l'I.H.P. Analyse non linéaire (1997)
- Volume: 14, Issue: 1, page 1-53
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAndreucci, D., Herrero, M. A., and Velázquez, J. J. L.. "Liouville theorems and blow up behaviour in semilinear reaction diffusion systems." Annales de l'I.H.P. Analyse non linéaire 14.1 (1997): 1-53. <http://eudml.org/doc/78405>.
@article{Andreucci1997,
author = {Andreucci, D., Herrero, M. A., Velázquez, J. J. L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {positive solutions; classification of the blow up patterns; Liouville theorems},
language = {eng},
number = {1},
pages = {1-53},
publisher = {Gauthier-Villars},
title = {Liouville theorems and blow up behaviour in semilinear reaction diffusion systems},
url = {http://eudml.org/doc/78405},
volume = {14},
year = {1997},
}
TY - JOUR
AU - Andreucci, D.
AU - Herrero, M. A.
AU - Velázquez, J. J. L.
TI - Liouville theorems and blow up behaviour in semilinear reaction diffusion systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 1
SP - 1
EP - 53
LA - eng
KW - positive solutions; classification of the blow up patterns; Liouville theorems
UR - http://eudml.org/doc/78405
ER -
References
top- [1] D. Amadori, Unstable blow up patterns, to appear in Diff. and Integr. Equations. Zbl0839.35062MR1348961
- [2] D. Andreucci, New results on the Cauchy problem for parabolic systems and with strongly nonlinear sources, Manuscripta Math., Vol. 77, 1992, pp. 127-159 Zbl0801.35043MR1188577
- [3] D. Andreucci, Degenerate parabolic equations with initial data measures, to Trans. Amer. Mat. Soc. Zbl0885.35056MR1333384
- [4] D. Andreucci and E. Dibenedetto, On the Cauchy problem and initial traces for a of evolution equations with strongly nonlinear sources, Ann. Sc. Normale Pisa, V1991. Zbl0762.35052
- [5] J. Bebernes and A. Lacey, Finite-time blow up for a particular parabolic system, J. Math. Anal., Vol. 21, no. 6, 1990, pp. 1415-1425. Zbl0721.35009MR1075585
- [6] J. Bebernes and A. Lacey, Finite-time blow up for semilinear reactive-diffusive systems, to appear in J. Diff. Eq. Zbl0801.35050
- [7] A. Bressan, On the asymptotic shape of blow up, Indiana Univ. Math. J., Vol. 39, no. 41990, pp. 947-960 Zbl0798.35020MR1087180
- [8] A. Bressan, Stable blow up patterns, J. Diff. Equations, Vol. 98, 1992, pp. 57-75. Zbl0770.35010MR1168971
- [9] J. Bricmont and A. Kupiainen, Universality in blow up for nonlinear heat equations, preprint, 1993. Zbl0857.35018MR1267701
- [10] G. Caristi and E. Mitidieri, Blow up estimates of positive solutions of a parabolic system to appear in J. Diff. Eq. Zbl0807.35066MR1297658
- [11] E. Dibenedetto, Degenerate parabolic equations, Springer-Verlag, New York, 1993. Zbl0794.35090MR1230384
- [12] M. Escobedo and M.A. Herrero, Boundedness and blow up for a semilinear reaction diffusion system, J. Diff. Eq., Vol. 89, no. 1, 1991, pp. 176-202. Zbl0735.35013MR1088342
- [13] M. Escobedo and M.A. Herrero, A semilinear parabolic system in a bounded domainAnnali Mat. Pura Appl. (IV), CLXV, 1993, pp. 315-336. Zbl0806.35088MR1271424
- [14] M. Escobedo and H.A. Levine, Critical blow up and global existence numbers for a weakly coupled system of reaction-diffusion equations, to appear in Trans. Amer. Math. Soc. Zbl0822.35068MR1328471
- [15] S. Filippas and R.V. Kohn, Refined asymptotics for the blow up of ut - Δu = up, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 821-869. Zbl0784.35010MR1164066
- [16] S. Filippas and F. Merle, Modulation theory for the blow up of vector valued nonlinear heat equations, to appear in J. Diff. Eq. Zbl0814.35043
- [17] V.A. Galaktionov and S.A. Posashkov, Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Diff. Urav., Vol. 22, no. 7, 1986, pp. 1165-1173. Zbl0632.35028MR853803
- [18] B. Gidas and J. Spruck, Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., Vol. 34, 1981, pp. 525-598. Zbl0465.35003MR615628
- [19] Y. Giga and R.V. Kohn, Asymptotically self-similar blow up of semilinear heat equationsComm. Pure Appl. Math., Vol. 38, 1985, pp. 297-319. Zbl0585.35051MR784476
- [20] Y. Giga, R.V. Kohn, Nondegeneracy of blow up for semilinear heat equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 845-884. Zbl0703.35020MR1003437
- [21] M.A. Herrero and J.J.L. Velázquez, Blow up behaviour of one dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré, Vol. 10, no. 2, 1993, pp. 131-189. Zbl0813.35007MR1220032
- [22] M.A. Herrero and J.J.L. Velázquez, Flat blow up in one dimensional semilinear heat equations, Diff. and Integral Eq., Vol. 5, 1992, pp. 973-998. Zbl0767.35036MR1171974
- [23] M.A. Herrero and J.J.L. Velázquez, Explosion de solutions d'equations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Série A, Vol. 319, 1994, pp. 141-145. Zbl0806.35005MR1288393
- [24] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Uraltseva, Linear and quasilinear equations of parabolic type, AMS Translations of Math., Monographs, XXIII, Providence RI, 1968.
- [25] F. Rothe, Global solutions of reaction-diffusion systems, in Lecture Notes in Mathematics, 1072, Springer-Verlag, New York, 1984. Zbl0546.35003MR755878
- [26] J.J.L. Velázquez, Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., Vol. 338, no. 1, 1993, pp. 441-464. Zbl0803.35015MR1134760
- [27] J.J.L. Velázquez, Higher dimensional blow up for semilinear parabolic equations, Comm. in PDE, Vol. 17, no. 9&10, 1992, pp. 1567-1596. Zbl0813.35009
- [28] J.J.L. Velázquez, Blow up of semilinear parabolic equations, in Recent advances in partial differential equations, eds. M. A. Herrero and E. Zuazua, Research in Applied Mathematics, Masson & J. Wiley, 1994, pp. 131-145. Zbl0798.35072
- [29] J.J.L. Velázquez, Curvature blow up in perturbations of minimizing cones evolving by mean curvature flow, Ann. Scuola Normale Sup. Pisa, Serie IV, Vol. XXI, 1994, pp. 595-628. Zbl0926.35023MR1318773
- [30] F.B. Weissler, An L∞ blow up estimate for a nolinear heat equation, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 291-295. Zbl0592.35071MR784475
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.