Liouville theorems and blow up behaviour in semilinear reaction diffusion systems

D. Andreucci; M. A. Herrero; J. J. L. Velázquez

Annales de l'I.H.P. Analyse non linéaire (1997)

  • Volume: 14, Issue: 1, page 1-53
  • ISSN: 0294-1449

How to cite

top

Andreucci, D., Herrero, M. A., and Velázquez, J. J. L.. "Liouville theorems and blow up behaviour in semilinear reaction diffusion systems." Annales de l'I.H.P. Analyse non linéaire 14.1 (1997): 1-53. <http://eudml.org/doc/78405>.

@article{Andreucci1997,
author = {Andreucci, D., Herrero, M. A., Velázquez, J. J. L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {positive solutions; classification of the blow up patterns; Liouville theorems},
language = {eng},
number = {1},
pages = {1-53},
publisher = {Gauthier-Villars},
title = {Liouville theorems and blow up behaviour in semilinear reaction diffusion systems},
url = {http://eudml.org/doc/78405},
volume = {14},
year = {1997},
}

TY - JOUR
AU - Andreucci, D.
AU - Herrero, M. A.
AU - Velázquez, J. J. L.
TI - Liouville theorems and blow up behaviour in semilinear reaction diffusion systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 1
SP - 1
EP - 53
LA - eng
KW - positive solutions; classification of the blow up patterns; Liouville theorems
UR - http://eudml.org/doc/78405
ER -

References

top
  1. [1] D. Amadori, Unstable blow up patterns, to appear in Diff. and Integr. Equations. Zbl0839.35062MR1348961
  2. [2] D. Andreucci, New results on the Cauchy problem for parabolic systems and with strongly nonlinear sources, Manuscripta Math., Vol. 77, 1992, pp. 127-159 Zbl0801.35043MR1188577
  3. [3] D. Andreucci, Degenerate parabolic equations with initial data measures, to Trans. Amer. Mat. Soc. Zbl0885.35056MR1333384
  4. [4] D. Andreucci and E. Dibenedetto, On the Cauchy problem and initial traces for a of evolution equations with strongly nonlinear sources, Ann. Sc. Normale Pisa, V1991. Zbl0762.35052
  5. [5] J. Bebernes and A. Lacey, Finite-time blow up for a particular parabolic system, J. Math. Anal., Vol. 21, no. 6, 1990, pp. 1415-1425. Zbl0721.35009MR1075585
  6. [6] J. Bebernes and A. Lacey, Finite-time blow up for semilinear reactive-diffusive systems, to appear in J. Diff. Eq. Zbl0801.35050
  7. [7] A. Bressan, On the asymptotic shape of blow up, Indiana Univ. Math. J., Vol. 39, no. 41990, pp. 947-960 Zbl0798.35020MR1087180
  8. [8] A. Bressan, Stable blow up patterns, J. Diff. Equations, Vol. 98, 1992, pp. 57-75. Zbl0770.35010MR1168971
  9. [9] J. Bricmont and A. Kupiainen, Universality in blow up for nonlinear heat equations, preprint, 1993. Zbl0857.35018MR1267701
  10. [10] G. Caristi and E. Mitidieri, Blow up estimates of positive solutions of a parabolic system to appear in J. Diff. Eq. Zbl0807.35066MR1297658
  11. [11] E. Dibenedetto, Degenerate parabolic equations, Springer-Verlag, New York, 1993. Zbl0794.35090MR1230384
  12. [12] M. Escobedo and M.A. Herrero, Boundedness and blow up for a semilinear reaction diffusion system, J. Diff. Eq., Vol. 89, no. 1, 1991, pp. 176-202. Zbl0735.35013MR1088342
  13. [13] M. Escobedo and M.A. Herrero, A semilinear parabolic system in a bounded domainAnnali Mat. Pura Appl. (IV), CLXV, 1993, pp. 315-336. Zbl0806.35088MR1271424
  14. [14] M. Escobedo and H.A. Levine, Critical blow up and global existence numbers for a weakly coupled system of reaction-diffusion equations, to appear in Trans. Amer. Math. Soc. Zbl0822.35068MR1328471
  15. [15] S. Filippas and R.V. Kohn, Refined asymptotics for the blow up of ut - Δu = up, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 821-869. Zbl0784.35010MR1164066
  16. [16] S. Filippas and F. Merle, Modulation theory for the blow up of vector valued nonlinear heat equations, to appear in J. Diff. Eq. Zbl0814.35043
  17. [17] V.A. Galaktionov and S.A. Posashkov, Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Diff. Urav., Vol. 22, no. 7, 1986, pp. 1165-1173. Zbl0632.35028MR853803
  18. [18] B. Gidas and J. Spruck, Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., Vol. 34, 1981, pp. 525-598. Zbl0465.35003MR615628
  19. [19] Y. Giga and R.V. Kohn, Asymptotically self-similar blow up of semilinear heat equationsComm. Pure Appl. Math., Vol. 38, 1985, pp. 297-319. Zbl0585.35051MR784476
  20. [20] Y. Giga, R.V. Kohn, Nondegeneracy of blow up for semilinear heat equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 845-884. Zbl0703.35020MR1003437
  21. [21] M.A. Herrero and J.J.L. Velázquez, Blow up behaviour of one dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré, Vol. 10, no. 2, 1993, pp. 131-189. Zbl0813.35007MR1220032
  22. [22] M.A. Herrero and J.J.L. Velázquez, Flat blow up in one dimensional semilinear heat equations, Diff. and Integral Eq., Vol. 5, 1992, pp. 973-998. Zbl0767.35036MR1171974
  23. [23] M.A. Herrero and J.J.L. Velázquez, Explosion de solutions d'equations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Série A, Vol. 319, 1994, pp. 141-145. Zbl0806.35005MR1288393
  24. [24] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Uraltseva, Linear and quasilinear equations of parabolic type, AMS Translations of Math., Monographs, XXIII, Providence RI, 1968. 
  25. [25] F. Rothe, Global solutions of reaction-diffusion systems, in Lecture Notes in Mathematics, 1072, Springer-Verlag, New York, 1984. Zbl0546.35003MR755878
  26. [26] J.J.L. Velázquez, Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., Vol. 338, no. 1, 1993, pp. 441-464. Zbl0803.35015MR1134760
  27. [27] J.J.L. Velázquez, Higher dimensional blow up for semilinear parabolic equations, Comm. in PDE, Vol. 17, no. 9&10, 1992, pp. 1567-1596. Zbl0813.35009
  28. [28] J.J.L. Velázquez, Blow up of semilinear parabolic equations, in Recent advances in partial differential equations, eds. M. A. Herrero and E. Zuazua, Research in Applied Mathematics, Masson & J. Wiley, 1994, pp. 131-145. Zbl0798.35072
  29. [29] J.J.L. Velázquez, Curvature blow up in perturbations of minimizing cones evolving by mean curvature flow, Ann. Scuola Normale Sup. Pisa, Serie IV, Vol. XXI, 1994, pp. 595-628. Zbl0926.35023MR1318773
  30. [30] F.B. Weissler, An L∞ blow up estimate for a nolinear heat equation, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 291-295. Zbl0592.35071MR784475

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.