Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes
Annales de l'I.H.P. Analyse non linéaire (1998)
- Volume: 15, Issue: 4, page 431-458
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCarraro, Laurent, and Duchon, Jean. "Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes." Annales de l'I.H.P. Analyse non linéaire 15.4 (1998): 431-458. <http://eudml.org/doc/78443>.
@article{Carraro1998,
author = {Carraro, Laurent, Duchon, Jean},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Burgers equation; stochastic initial value; Lévy process; intrinsic statistical solution; existence; uniqueness; Brownian initial data},
language = {fre},
number = {4},
pages = {431-458},
publisher = {Gauthier-Villars},
title = {Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes},
url = {http://eudml.org/doc/78443},
volume = {15},
year = {1998},
}
TY - JOUR
AU - Carraro, Laurent
AU - Duchon, Jean
TI - Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 4
SP - 431
EP - 458
LA - fre
KW - Burgers equation; stochastic initial value; Lévy process; intrinsic statistical solution; existence; uniqueness; Brownian initial data
UR - http://eudml.org/doc/78443
ER -
References
top- [1] P. Bertoin, Lévy processes, Cambridge University Press, 1996. Zbl0861.60003MR1406564
- [2] P. Billingsley, Convergence of probability measures, J. Wiley & Sons, 1968. Zbl0172.21201
- [3] L. Breiman, Probability, SIAM Classics in Applied Mathematics, 1992. Zbl0753.60001MR1163370
- [4] I.I. Gihman, A.V. Skorohod, The theory of stochastic processes II, Springer-Verlag, 1975. Zbl0305.60027MR375463
- [5] E. Hopf, The partial differential equation ut + u ux = μ uxx, Commun. Pure Appl. Mech., Vol. 3, p. 201-230, 1950. Zbl0039.10403MR47234
- [6] P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM, 1973. Zbl0268.35062MR350216
- [7] Z.-S. She, E. Aurell, U. Frisch, The inviscid Burgers equation with initial data of brownian type, Commun. Math. Phys., Vol. 148, 1992, p. 623-641. Zbl0755.60104MR1181072
- [8] Ya G. Sinai, Statistics of shocks in solutions of inviscid Burgers equation, Commun. Math. Phys., Vol. 148, 1992, p. 601-621. Zbl0755.60105MR1181071
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.