Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes

Laurent Carraro; Jean Duchon

Annales de l'I.H.P. Analyse non linéaire (1998)

  • Volume: 15, Issue: 4, page 431-458
  • ISSN: 0294-1449

How to cite

top

Carraro, Laurent, and Duchon, Jean. "Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes." Annales de l'I.H.P. Analyse non linéaire 15.4 (1998): 431-458. <http://eudml.org/doc/78443>.

@article{Carraro1998,
author = {Carraro, Laurent, Duchon, Jean},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Burgers equation; stochastic initial value; Lévy process; intrinsic statistical solution; existence; uniqueness; Brownian initial data},
language = {fre},
number = {4},
pages = {431-458},
publisher = {Gauthier-Villars},
title = {Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes},
url = {http://eudml.org/doc/78443},
volume = {15},
year = {1998},
}

TY - JOUR
AU - Carraro, Laurent
AU - Duchon, Jean
TI - Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 4
SP - 431
EP - 458
LA - fre
KW - Burgers equation; stochastic initial value; Lévy process; intrinsic statistical solution; existence; uniqueness; Brownian initial data
UR - http://eudml.org/doc/78443
ER -

References

top
  1. [1] P. Bertoin, Lévy processes, Cambridge University Press, 1996. Zbl0861.60003MR1406564
  2. [2] P. Billingsley, Convergence of probability measures, J. Wiley & Sons, 1968. Zbl0172.21201
  3. [3] L. Breiman, Probability, SIAM Classics in Applied Mathematics, 1992. Zbl0753.60001MR1163370
  4. [4] I.I. Gihman, A.V. Skorohod, The theory of stochastic processes II, Springer-Verlag, 1975. Zbl0305.60027MR375463
  5. [5] E. Hopf, The partial differential equation ut + u ux = μ uxx, Commun. Pure Appl. Mech., Vol. 3, p. 201-230, 1950. Zbl0039.10403MR47234
  6. [6] P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM, 1973. Zbl0268.35062MR350216
  7. [7] Z.-S. She, E. Aurell, U. Frisch, The inviscid Burgers equation with initial data of brownian type, Commun. Math. Phys., Vol. 148, 1992, p. 623-641. Zbl0755.60104MR1181072
  8. [8] Ya G. Sinai, Statistics of shocks in solutions of inviscid Burgers equation, Commun. Math. Phys., Vol. 148, 1992, p. 601-621. Zbl0755.60105MR1181071

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.