A remark on multiplicity of solutions for the Ginzburg-Landau equation

Feng Zhou; Qing Zhou

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 2, page 255-267
  • ISSN: 0294-1449

How to cite

top

Zhou, Feng, and Zhou, Qing. "A remark on multiplicity of solutions for the Ginzburg-Landau equation." Annales de l'I.H.P. Analyse non linéaire 16.2 (1999): 255-267. <http://eudml.org/doc/78465>.

@article{Zhou1999,
author = {Zhou, Feng, Zhou, Qing},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Ginzburg-Landau equation; multiple solutions; Ljusternik-Schnirelman category},
language = {eng},
number = {2},
pages = {255-267},
publisher = {Gauthier-Villars},
title = {A remark on multiplicity of solutions for the Ginzburg-Landau equation},
url = {http://eudml.org/doc/78465},
volume = {16},
year = {1999},
}

TY - JOUR
AU - Zhou, Feng
AU - Zhou, Qing
TI - A remark on multiplicity of solutions for the Ginzburg-Landau equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 2
SP - 255
EP - 267
LA - eng
KW - Ginzburg-Landau equation; multiple solutions; Ljusternik-Schnirelman category
UR - http://eudml.org/doc/78465
ER -

References

top
  1. [AB1] L. Almeida and F. Bethuel, Multiplicity results for the Ginzburg-Landau equation in presence of symmetries, to appear in Houston Math. J. Zbl0901.35029
  2. [AB2] L. Almeida and F. Bethuel, Méthodes topologiques pour l'équation de Ginzburg-Landau, C. R. Acad. Sci. Paris, Vol. 320, 1996, pp. 935-938. Zbl0826.35036
  3. [AB3] L. Almeida and F. Bethuel, Topological methods for the Ginzburg-Landau equations, to appear in J. Math. Pures et Appl., 1996. Zbl0904.35023
  4. [Ar] V.I. ARNOL'D, The cohomology ring of the colored braid group (English, Russian original), Math. Notes, Vol. 5, 1969, pp. 138-140 ; translation from, Mat. Zametki, Vol. 5, 1969, pp. 227-231. Zbl0277.55002MR242196
  5. [BBH1] F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. of Vari. and PDE's, Vol. 1, 1993, pp. 123-148. Zbl0834.35014MR1261720
  6. [BBH2] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, 1994. Zbl0802.35142MR1269538
  7. [BCL] H. Brezis, J.M. Coron and E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys., Vol. 107, 1986, pp. 649-705. Zbl0608.58016MR868739
  8. [BG] I. Berntein and T. Ganea, Homotopical nilpotency, Illinois J. Math., Vol. 10, 1961, pp. 99-130. Zbl0096.17602MR126277
  9. [FP] P. Felmer and M. Del Pino, Local minimizers for the Ginzburg-Landau energy, Preprint. Zbl0943.35086MR1466408
  10. [Li] F.H. Lin, Solutions of Ginzburg-Landau equations and critical points of the renormalized energy, Ann. IHP, Analyse Non Linéaire, Vol. 12, 1995, pp. 599-622. Zbl0845.35052MR1353261
  11. [Pa] R.S. Palais, Ljusternik-Schnirelman theory on Banach manifolds, Topology, Vol. 5, 1966, pp. 115-132. Zbl0143.35203MR259955

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.