Motion of concentration sets in Ginzburg-Landau equations

Fabrice Bethuel; Giandomenico Orlandi; Didier Smets

Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)

  • Volume: 13, Issue: 1, page 3-43
  • ISSN: 0240-2963

How to cite

top

Bethuel, Fabrice, Orlandi, Giandomenico, and Smets, Didier. "Motion of concentration sets in Ginzburg-Landau equations." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.1 (2004): 3-43. <http://eudml.org/doc/73619>.

@article{Bethuel2004,
author = {Bethuel, Fabrice, Orlandi, Giandomenico, Smets, Didier},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {parabolic Ginzburg-Landau equation; topological defects; renormalized energy densities},
language = {eng},
number = {1},
pages = {3-43},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Motion of concentration sets in Ginzburg-Landau equations},
url = {http://eudml.org/doc/73619},
volume = {13},
year = {2004},
}

TY - JOUR
AU - Bethuel, Fabrice
AU - Orlandi, Giandomenico
AU - Smets, Didier
TI - Motion of concentration sets in Ginzburg-Landau equations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 1
SP - 3
EP - 43
LA - eng
KW - parabolic Ginzburg-Landau equation; topological defects; renormalized energy densities
UR - http://eudml.org/doc/73619
ER -

References

top
  1. [1] Alberti ( G. ) , Baldo ( S.) and Orlandi ( G.), Variational convergence for functionals of Ginzburg-Landau type, preprint 2002. 
  2. [2] Alweida ( L. ) and Bethuel ( F.), Topological methods for the Ginzburg-Landau equation, J. Math Pures Appl.11, p. 1-49 (1998). Zbl0904.35023MR1617594
  3. [3] Ambrosio ( L.) and Soner ( M.), A measure theoretic approach to higher codimension mean curvature flow, Ann. Sc. Norm. Sup. Pisa, Cl. Sci.25, p. 27-49 (1997). Zbl1043.35136MR1655508
  4. [4] Bethuel ( F. ), Bourgain ( J.), Brezis ( H.) and Orlandi ( G.), W1,p estimates for solutions to the Ginzburg-Landau functional with boundary data in H1/2 , C. R. Acad. Sci. Paris (1) 333, p. 1-8 (2001). Zbl1080.35020MR1881236
  5. [5] Bethuel ( F. ) , Brezis ( H.) and Hélein ( F.), Ginzburg-Landau vortices, Birkhäuser, Boston, 1994. Zbl0802.35142MR1269538
  6. [6] Bethuel ( F. ), Brezis ( H.) and Orlandi ( G.), Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions, J. Funct. Anal.186 (2001), p. 432-520. Zbl1077.35047MR1864830
  7. Erratum188, p. 548-549 (2002). MR1883416
  8. [7] Bethuel ( F. ) and Orlandi ( G.), Uniform estimates for the parabolic Ginzburg-Landau equation, ESAIM, C.O.C.V8, p. 219-238 (2002). Zbl1078.35013MR1932951
  9. [8] Bethuel ( F. ), Orlandi ( G.) and Smets ( D.), Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc., to appear. Zbl1091.35085
  10. [9] Bethuel ( F. ), Orlandi ( G.) and Smets ( D.), Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature, C. R. Acad. Sci. Paris (I) 336, (2003) and preprint Lab. J.L. Lions (2003). Zbl1031.35026MR1988309
  11. [10] Bethuel ( F.) and Rivière ( T.), A minimization problem related to superconductivity, Annales IHP, Analyse Non Linéaire12, p. 243-303 (1995). Zbl0842.35119
  12. [11] Bethuel ( F. ) and Saut ( J.C.), Travelling waves for the Gross-Pitaevskii equation, Annales IHP, Phys. Théor.70, (1999). Zbl0933.35177MR1669387
  13. [12] Bourgain ( J. ) , Brezis ( H.) and Mironescu ( P.), On the structure of the Sobolev space H1/2 with values into the circle, C.R. Acad. Sci. Paris (I) 331, p. 119-124, (2000) and detailed paper in preparation. Zbl0970.35069MR1781527
  14. [13] Brakke ( K.) , The motion of a surface by its mean curvature, Princeton University Press (1978). Zbl0386.53047MR485012
  15. [14] Brezis ( H. ) and Mironescu ( P.), Sur une conjecture de E. De Giorgi relative à l'énergie de Ginzburg-Landau, C. R. Acad. Sci. Paris Sér. I Math.319, p. 167-170 (1994). Zbl0805.49004MR1288397
  16. [15] Bronsard ( L.) and Kohn ( R.V.), Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics,. J. Differential Equations90, p. 211-237 (1991). Zbl0735.35072MR1101239
  17. [16] Carr ( J.) , Pego ( R. ), Metastable patterns in solutions of u t = ε2uxx - f(u, Comm. Pure Appl. Math.42, p. 523-576 (1989). Zbl0685.35054MR997567
  18. [17] Chen ( X.) , Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations96, p. 116-141 (1992). Zbl0765.35024MR1153311
  19. [18] Chen ( Y.) and Struwe ( M.), Existence and partial regularity results for the heat flow for harmonic maps, Math. Z.201, p. 83-103 (1989). Zbl0652.58024MR990191
  20. [19] De Giorgi ( E. ), Some conjectures on flow by mean curvature , Proc. of the Capri Workshop ( 1990), Benevento-Bruno-Sbordone (eds.) (1990). 
  21. [20] De Mottoni ( P.) and Schatzman ( M.), Development of interfaces in RN, Proc. Roy. Soc. Edinburgh Sect.A116, p. 207-220 (1990). Zbl0725.35009MR1084732
  22. [21] Evans ( L.C. ), Soner ( H.M.) and Souganidis ( P.E.), Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math.45, p. 1097-1123 (1992 ). Zbl0801.35045MR1177477
  23. [22] Federer ( H. ) , Geometric Measure Theory, Springer , Berlin, (1969). Zbl0176.00801MR257325
  24. [23] Giga ( Y.) and Kohn ( R.V.), Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math.38, p. 297-319 (1985). Zbl0585.35051MR784476
  25. [24] Gurtin ( M. ), On a theory of phase transitions with interfacial energy, Arch. Rat. Mech. Anal.87, p. 187-212 (1985). MR768066
  26. [25] Huisken ( G.), Asymptotic behavior for singularities of the mean curvature flow, J. Diff. Geom.31, p. 285-299 (1990). Zbl0694.53005MR1030675
  27. [26] Ilmanen ( T.), Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Diff. Geom.38, p. 417-461 (1993). Zbl0784.53035MR1237490
  28. [27] Ilmanen ( T.), Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc.108, no. 520 (1994). Zbl0798.35066MR1196160
  29. [28] Jerrard ( R.L.) and Soner ( H.M.), Dynamics of Ginzburg-Landau vortices, Arch. Rational Mech. Anal.142, p. 99-125 (1998). Zbl0923.35167MR1629646
  30. [29] Jerrard ( R.L.) and Soner ( H.M.), Scaling limits and regularity results for a class of Ginzburg-Landau systems, Ann. Inst. H. Poincaré Anal. Non Linéaire16, p. 423-466 (1999). Zbl0944.35006MR1697561
  31. [30] Jerrard ( R.L.) and Soner ( H.M.), The Jacobian and the Ginzburg-Landau energy, Calc. Var. PDE14, p. 151-191 (2002). Zbl1034.35025MR1890398
  32. [31] Lin ( F.H. ), Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math.49, p. 323-359 (1996). Zbl0853.35058MR1376654
  33. [32] Lin ( F.H. ), Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds, Comm. Pure Appl. Math.51, p. 385-441 (1998). Zbl0932.35121MR1491752
  34. [33] Lin ( F.H.) and Rivière ( T.), Complex Ginzburg-Landau equation in high dimension and codimension 2 area minimizing currents, J. Eur. Math. Soc.1, p. 237-311 (1999). Zbl0939.35056MR1714735
  35. Erratum, Ibid. 
  36. [34] Lin ( F.H.) and Rivière ( T.), A quantization property for static Ginzburg-Landau vortices, Comm. Pure Appl. Math.54, p. 206-228 (2001). Zbl1033.58013MR1794353
  37. [35] Lin ( F.H. ) and Rivière ( T.), A quantization property for moving line vortices, Comm. Pure Appl. Math.54, p. 826-850 (2001). Zbl1029.35127MR1823421
  38. [36] Mermin ( N.D. ), The topological theory of defects in ordered media, Rev. Modern Phys.51, p. 591-648 (1979). MR541885
  39. [37] Mironescu ( P.), Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale, C.R. Acad. Sci. Paris (I) 323, p. 593-598 (1996). Zbl0858.35038MR1411048
  40. [38] Modica ( L. ), The gradient theory of phase transitions and the minimal interface criterion, Arch. Rat. Mech. Anal.98, p. 123-142 (1987). Zbl0616.76004MR866718
  41. [39] Modica ( L. ) and Mortola ( S.), Un esempio di Γ-convergenza , Boll. Un. Mat. Ital.B14, p. 285-299 (1977). Zbl0356.49008MR445362
  42. [40] Pacard ( F.) and Rivière ( T.), Linear and non linear aspects of vortices , Birkhäuser, (2001). Zbl0948.35003
  43. [41] Pismen ( L.M. ) and Rubinstein ( J.), Motion of vortex lines in the Ginzburg-Landau model, Phys.D47, p. 353-360 (1991). Zbl0728.35090MR1098255
  44. [42] Preiss ( D. ), Geometry of measures in Rn: distribution, rectifiability, and densities, Ann. of Math.125, p. 537-643 (1987). Zbl0627.28008MR890162
  45. [43] Rivière ( T.), Line vortices in the U(1) Higgs model, ESAIM, C.O.C.V.1, p. 77-167 (1996). Zbl0874.53019MR1394302
  46. [44] Serfaty ( S.), Local minimizers for the Ginzburg-Landau energy near critical magnetic fields, I and II, Comm. Contemp. Math.1, p. 213-254 and p. 295-333 (1999). Zbl0944.49007MR1696100
  47. [45] Simon ( L. ), Lectures on Geometric Measure Theory, Proc. of the Centre for Math. Anal., Austr. Nat. Univ., 1983 . Zbl0546.49019MR756417
  48. [46] Soner ( H.M. ), Ginzburg-Landau equation and motion by mean curvature. I. Convergence, and II. Development of the initial interface, J. Geom. Anal.7, no. 3, p. 437-475 and p. 477-491 (1997). Zbl0935.35061MR1674799
  49. [47] Sternberg ( P.), The effect of a singular perturbation on nonconvex variational problems, Arch. Rat. Mech. Anal.101, p. 209-260 (1988). Zbl0647.49021MR930124
  50. [48] Struwe ( M. ), On the evolution of harmonic maps in higher dimensions, J. Diff. Geom.28, p. 485-502 (1988). Zbl0631.58004MR965226
  51. [49] Struwe ( M. ), On the asymptotic behavior of the Ginzburg-Landau model in 2 dimensions, J. Diff. Equ.7, p. 1613-1624 (1994), Zbl0809.35031MR1269674
  52. Erratum8, p. 224 (1995). 
  53. [50] Wang ( C.) , On moving Ginzburg-Landau filament vortices, Max-Planck-InstitutLeipzig, preprint. Zbl1063.35081
  54. [51] Zhou ( F.) and Zhou ( Q.), A remark on the multiplicity of solutions for the Ginzburg-Landau equation, Ann. IHP, Analyse Nonlinéaire16, p. 255-267 (1999). Zbl0928.35034MR1674771

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.