Concentration of low energy extremals
Annales de l'I.H.P. Analyse non linéaire (1999)
- Volume: 16, Issue: 3, page 269-298
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] C. Bandle and M. Flucher, Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations ΔU = eU and ΔU = U(n+2)/(n-2). SIAM Rev., Vol. 38, 2, 1996, pp. 191-238. Zbl0857.35034MR1391227
- [2] C. Dellacherie and P.-A. Meyer, Probabilities and potential. Vol. 29 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1978. Zbl0494.60001MR521810
- [3] M. Flucher, An asymptotic formula for the minimal capacity among sets of equal area. Calc. Var. Partial Differential Equations, Vol. 1, 1, 1993, pp. 71-86. Zbl0801.35153MR1261718
- [4] M. Flucher and S. Müller, Radial symmetry and decay rate of variational ground states in the zero mass case. SIAM J. Math. Anal., Vol. 29, 3, 1998, pp. 712-719 Zbl0908.35005MR1617704
- [5] M. Flucher, A. Garroni and S. Müller, Concentration of low energy extremals: Identification of concentration points. (In preparation). Zbl1004.35040
- [6] M. Flucher and M. Rumpf, Bernoulli's free-boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math., Vol. 486, 1997, pp. 165-204. Zbl0909.35154MR1450755
- [7] M. Flucher and J. Wei, Asymptotic shape and location of small cores in elliptic free-boundary problems. Math. Z., Vol. 228, 1998, pp. 683-703. Zbl0921.35024MR1644436
- [8] P.M. Gruber and J.M. Wills Eds. Handbook of convex geometry., Vol. B. North-Holland Publishing Co., Amsterdam, 1993. Zbl0777.52002MR1242973
- [9] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire, Vol. 1, 2, 1984, pp. 109-145. Zbl0541.49009MR778970
- [10] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana, Vol. 1, 1, 1985, pp. 145-201. Zbl0704.49005MR834360
- [11] Charles B. Morrey, Multiple integrals in the calculus of variations. Springer-Verlag New York, Inc., New York, 1966. Die Grundlehren der mathematischen Wissenschaften, Band 130. Zbl0142.38701MR202511
- [12] G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci., Vol. 4, 3, 4, 1976, pp. 697-718. Zbl0341.35031MR601601