Concentration of low energy extremals

M. Flucher; S. Müller

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 3, page 269-298
  • ISSN: 0294-1449

How to cite

top

Flucher, M., and Müller, S.. "Concentration of low energy extremals." Annales de l'I.H.P. Analyse non linéaire 16.3 (1999): 269-298. <http://eudml.org/doc/78466>.

@article{Flucher1999,
author = {Flucher, M., Müller, S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {variational problem; concentration; critical Sobolev exponent; generalized Sobolev inequality},
language = {eng},
number = {3},
pages = {269-298},
publisher = {Gauthier-Villars},
title = {Concentration of low energy extremals},
url = {http://eudml.org/doc/78466},
volume = {16},
year = {1999},
}

TY - JOUR
AU - Flucher, M.
AU - Müller, S.
TI - Concentration of low energy extremals
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 3
SP - 269
EP - 298
LA - eng
KW - variational problem; concentration; critical Sobolev exponent; generalized Sobolev inequality
UR - http://eudml.org/doc/78466
ER -

References

top
  1. [1] C. Bandle and M. Flucher, Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations ΔU = eU and ΔU = U(n+2)/(n-2). SIAM Rev., Vol. 38, 2, 1996, pp. 191-238. Zbl0857.35034MR1391227
  2. [2] C. Dellacherie and P.-A. Meyer, Probabilities and potential. Vol. 29 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1978. Zbl0494.60001MR521810
  3. [3] M. Flucher, An asymptotic formula for the minimal capacity among sets of equal area. Calc. Var. Partial Differential Equations, Vol. 1, 1, 1993, pp. 71-86. Zbl0801.35153MR1261718
  4. [4] M. Flucher and S. Müller, Radial symmetry and decay rate of variational ground states in the zero mass case. SIAM J. Math. Anal., Vol. 29, 3, 1998, pp. 712-719 Zbl0908.35005MR1617704
  5. [5] M. Flucher, A. Garroni and S. Müller, Concentration of low energy extremals: Identification of concentration points. (In preparation). Zbl1004.35040
  6. [6] M. Flucher and M. Rumpf, Bernoulli's free-boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math., Vol. 486, 1997, pp. 165-204. Zbl0909.35154MR1450755
  7. [7] M. Flucher and J. Wei, Asymptotic shape and location of small cores in elliptic free-boundary problems. Math. Z., Vol. 228, 1998, pp. 683-703. Zbl0921.35024MR1644436
  8. [8] P.M. Gruber and J.M. Wills Eds. Handbook of convex geometry., Vol. B. North-Holland Publishing Co., Amsterdam, 1993. Zbl0777.52002MR1242973
  9. [9] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire, Vol. 1, 2, 1984, pp. 109-145. Zbl0541.49009MR778970
  10. [10] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana, Vol. 1, 1, 1985, pp. 145-201. Zbl0704.49005MR834360
  11. [11] Charles B. Morrey, Multiple integrals in the calculus of variations. Springer-Verlag New York, Inc., New York, 1966. Die Grundlehren der mathematischen Wissenschaften, Band 130. Zbl0142.38701MR202511
  12. [12] G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci., Vol. 4, 3, 4, 1976, pp. 697-718. Zbl0341.35031MR601601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.