-convergence of concentration problems
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)
- Volume: 2, Issue: 1, page 151-179
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topAmar, Micol, and Garroni, Adriana. "$\Gamma $-convergence of concentration problems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.1 (2003): 151-179. <http://eudml.org/doc/84494>.
@article{Amar2003,
abstract = {In this paper, we use $\Gamma $-convergence techniques to study the following variational problem\[ S^F\_\{\varepsilon \}(\Omega ) := \sup \left\lbrace \{\varepsilon \}^\{-2^*\}\int \_\Omega F(u) ~dx \ :\ \int \_\Omega \vert \nabla u\vert ^2~dx \le \{\varepsilon \}^2\ , \ u=0\ \{\rm on\}\ \partial \Omega \right\rbrace \, , \]where $0\le F(t)\le \vert t\vert ^\{2^*\}$, with $2^*=\{2n \over n-2\}$, and $\Omega $ is a bounded domain of $\{\{\mathbb \{R\}\}^n\}$, $n\ge 3$. We obtain a $\Gamma $-convergence result, on which one can easily read the usual concentration phenomena arising in critical growth problems. We extend the result to a non-homogeneous version of problem $S^F_\{\varepsilon \}(\Omega )$. Finally, a second order expansion in $\Gamma $-convergence permits to identify the concentration points of the maximizing sequences, also in some non-homogeneous case.},
author = {Amar, Micol, Garroni, Adriana},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {151-179},
publisher = {Scuola normale superiore},
title = {$\Gamma $-convergence of concentration problems},
url = {http://eudml.org/doc/84494},
volume = {2},
year = {2003},
}
TY - JOUR
AU - Amar, Micol
AU - Garroni, Adriana
TI - $\Gamma $-convergence of concentration problems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 1
SP - 151
EP - 179
AB - In this paper, we use $\Gamma $-convergence techniques to study the following variational problem\[ S^F_{\varepsilon }(\Omega ) := \sup \left\lbrace {\varepsilon }^{-2^*}\int _\Omega F(u) ~dx \ :\ \int _\Omega \vert \nabla u\vert ^2~dx \le {\varepsilon }^2\ , \ u=0\ {\rm on}\ \partial \Omega \right\rbrace \, , \]where $0\le F(t)\le \vert t\vert ^{2^*}$, with $2^*={2n \over n-2}$, and $\Omega $ is a bounded domain of ${{\mathbb {R}}^n}$, $n\ge 3$. We obtain a $\Gamma $-convergence result, on which one can easily read the usual concentration phenomena arising in critical growth problems. We extend the result to a non-homogeneous version of problem $S^F_{\varepsilon }(\Omega )$. Finally, a second order expansion in $\Gamma $-convergence permits to identify the concentration points of the maximizing sequences, also in some non-homogeneous case.
LA - eng
UR - http://eudml.org/doc/84494
ER -
References
top- [1] A. Bahri, “Critical points at infinity in some variational problems”, Vol. 182 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow, 1989. Zbl0676.58021MR1019828
- [2] C. Bandle – M. Flucher, Harmonic radius and concentration of energy; hyperbolic radius and Liouville’s equations and , Siam Rev., 38 (1996), 191-238. Zbl0857.35034MR1391227
- [3] F. Bethuel – H. Brézis – F. Hélein, Ginzburg-Landau vortices, In: “Progress in Nonlinear Differential Equations and their Applications”, 13, Birkhäuser Boston Inc., Boston, MA, 1994. Zbl0802.35142MR1269538
- [4] A. Braides, -convergence for beginners, To appear, 2002. Zbl1198.49001MR1968440
- [5] H. Brézis – L. Niremberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. Zbl0541.35029MR709644
- [6] H. Brézis – L. A. Peletier, Asymptotic for elliptic equations involving critical growth, In: “Partial differential equations and the calculus of variation”, Vol. I, 1 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 1989, 149–192. Zbl0685.35013MR1034005
- [7] G. Dal Maso, “An introduction to -convergence”, Birkhäuser, Boston, 1992. Zbl0816.49001MR1201152
- [8] G. Dal Maso – A. Malusa, Approximation of relaxed Dirichlet problems by boundary value problems in perforated domains, Proc. Royal Soc. Edinburgh 125A (1995), 99-114. Zbl0828.35007MR1318625
- [9] E. De Giorgi – T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 842-850. Zbl0339.49005MR448194
- [10] E. De Giorgi – T. Franzoni, Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia 3 (1979), 63-101.
- [11] M. Flucher, “Variational problems with concentration”, Birkhäuser, 1999. Zbl0940.35006MR1711532
- [12] M. Flucher – A. Garroni – S. Müller, Concentration of low energy extremals: identification of concentration points, Calc. Var. Partial Differential Equations 14 (2002), 483-516. Zbl1004.35040MR1911826
- [13] M. Flucher – S. Müller, Radial simmetry and decay rate of variational ground states in the zero mass case, Siam J. Math. Anal. 29 (1998), 712-719. Zbl0908.35005MR1617704
- [14] M. Flucher – S. Müller, Concentration of low energy extremals, Ann. Inst. H. Poincaré Anal. Non Linéaire (3) 10 (1999), 269-298. Zbl0938.35042MR1687286
- [15] A. Garroni – S. Müller, Concentration phenomena for the volume functional in unbounded domains: identification of concentration points, to appear on J. Funct. Anal., 2002 Zbl1161.49305MR1971258
- [16] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 2 (1991), 159-174. Zbl0729.35014MR1096602
- [17] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case., Rev. Mat. Iberoamericana 1 (1985), 145-201. Zbl0704.49005MR834360
- [18] O. Rey, Proof of two conjecture of H. Brezis and L.A. Peletier, Manuscripta Math. (1) 65 (1989), 19-37. Zbl0708.35032MR1006624
- [19] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 2 (1984), 479-495. Zbl0576.53028MR788292
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.