Γ -convergence of concentration problems

Micol Amar; Adriana Garroni

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 1, page 151-179
  • ISSN: 0391-173X

Abstract

top
In this paper, we use Γ -convergence techniques to study the following variational problem S ε F ( Ω ) : = sup ε - 2 * Ω F ( u ) d x : Ω | u | 2 d x ε 2 , u = 0 on Ω , where 0 F ( t ) | t | 2 * , with 2 * = 2 n n - 2 , and Ω is a bounded domain of n , n 3 . We obtain a Γ -convergence result, on which one can easily read the usual concentration phenomena arising in critical growth problems. We extend the result to a non-homogeneous version of problem S ε F ( Ω ) . Finally, a second order expansion in Γ -convergence permits to identify the concentration points of the maximizing sequences, also in some non-homogeneous case.

How to cite

top

Amar, Micol, and Garroni, Adriana. "$\Gamma $-convergence of concentration problems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.1 (2003): 151-179. <http://eudml.org/doc/84494>.

@article{Amar2003,
abstract = {In this paper, we use $\Gamma $-convergence techniques to study the following variational problem\[ S^F\_\{\varepsilon \}(\Omega ) := \sup \left\lbrace \{\varepsilon \}^\{-2^*\}\int \_\Omega F(u) ~dx \ :\ \int \_\Omega \vert \nabla u\vert ^2~dx \le \{\varepsilon \}^2\ , \ u=0\ \{\rm on\}\ \partial \Omega \right\rbrace \, , \]where $0\le F(t)\le \vert t\vert ^\{2^*\}$, with $2^*=\{2n \over n-2\}$, and $\Omega $ is a bounded domain of $\{\{\mathbb \{R\}\}^n\}$, $n\ge 3$. We obtain a $\Gamma $-convergence result, on which one can easily read the usual concentration phenomena arising in critical growth problems. We extend the result to a non-homogeneous version of problem $S^F_\{\varepsilon \}(\Omega )$. Finally, a second order expansion in $\Gamma $-convergence permits to identify the concentration points of the maximizing sequences, also in some non-homogeneous case.},
author = {Amar, Micol, Garroni, Adriana},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {151-179},
publisher = {Scuola normale superiore},
title = {$\Gamma $-convergence of concentration problems},
url = {http://eudml.org/doc/84494},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Amar, Micol
AU - Garroni, Adriana
TI - $\Gamma $-convergence of concentration problems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 1
SP - 151
EP - 179
AB - In this paper, we use $\Gamma $-convergence techniques to study the following variational problem\[ S^F_{\varepsilon }(\Omega ) := \sup \left\lbrace {\varepsilon }^{-2^*}\int _\Omega F(u) ~dx \ :\ \int _\Omega \vert \nabla u\vert ^2~dx \le {\varepsilon }^2\ , \ u=0\ {\rm on}\ \partial \Omega \right\rbrace \, , \]where $0\le F(t)\le \vert t\vert ^{2^*}$, with $2^*={2n \over n-2}$, and $\Omega $ is a bounded domain of ${{\mathbb {R}}^n}$, $n\ge 3$. We obtain a $\Gamma $-convergence result, on which one can easily read the usual concentration phenomena arising in critical growth problems. We extend the result to a non-homogeneous version of problem $S^F_{\varepsilon }(\Omega )$. Finally, a second order expansion in $\Gamma $-convergence permits to identify the concentration points of the maximizing sequences, also in some non-homogeneous case.
LA - eng
UR - http://eudml.org/doc/84494
ER -

References

top
  1. [1] A. Bahri, “Critical points at infinity in some variational problems”, Vol. 182 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow, 1989. Zbl0676.58021MR1019828
  2. [2] C. Bandle – M. Flucher, Harmonic radius and concentration of energy; hyperbolic radius and Liouville’s equations Δ U = e U and Δ U = U ( n + 2 ) / ( n - 2 ) , Siam Rev., 38 (1996), 191-238. Zbl0857.35034MR1391227
  3. [3] F. Bethuel – H. Brézis – F. Hélein, Ginzburg-Landau vortices, In: “Progress in Nonlinear Differential Equations and their Applications”, 13, Birkhäuser Boston Inc., Boston, MA, 1994. Zbl0802.35142MR1269538
  4. [4] A. Braides, Γ -convergence for beginners, To appear, 2002. Zbl1198.49001MR1968440
  5. [5] H. Brézis – L. Niremberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. Zbl0541.35029MR709644
  6. [6] H. Brézis – L. A. Peletier, Asymptotic for elliptic equations involving critical growth, In: “Partial differential equations and the calculus of variation”, Vol. I, 1 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 1989, 149–192. Zbl0685.35013MR1034005
  7. [7] G. Dal Maso, “An introduction to Γ -convergence”, Birkhäuser, Boston, 1992. Zbl0816.49001MR1201152
  8. [8] G. Dal Maso – A. Malusa, Approximation of relaxed Dirichlet problems by boundary value problems in perforated domains, Proc. Royal Soc. Edinburgh 125A (1995), 99-114. Zbl0828.35007MR1318625
  9. [9] E. De Giorgi – T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 842-850. Zbl0339.49005MR448194
  10. [10] E. De Giorgi – T. Franzoni, Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia 3 (1979), 63-101. 
  11. [11] M. Flucher, “Variational problems with concentration”, Birkhäuser, 1999. Zbl0940.35006MR1711532
  12. [12] M. Flucher – A. Garroni – S. Müller, Concentration of low energy extremals: identification of concentration points, Calc. Var. Partial Differential Equations 14 (2002), 483-516. Zbl1004.35040MR1911826
  13. [13] M. Flucher – S. Müller, Radial simmetry and decay rate of variational ground states in the zero mass case, Siam J. Math. Anal. 29 (1998), 712-719. Zbl0908.35005MR1617704
  14. [14] M. Flucher – S. Müller, Concentration of low energy extremals, Ann. Inst. H. Poincaré Anal. Non Linéaire (3) 10 (1999), 269-298. Zbl0938.35042MR1687286
  15. [15] A. Garroni – S. Müller, Concentration phenomena for the volume functional in unbounded domains: identification of concentration points, to appear on J. Funct. Anal., 2002 Zbl1161.49305MR1971258
  16. [16] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 2 (1991), 159-174. Zbl0729.35014MR1096602
  17. [17] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case., Rev. Mat. Iberoamericana 1 (1985), 145-201. Zbl0704.49005MR834360
  18. [18] O. Rey, Proof of two conjecture of H. Brezis and L.A. Peletier, Manuscripta Math. (1) 65 (1989), 19-37. Zbl0708.35032MR1006624
  19. [19] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 2 (1984), 479-495. Zbl0576.53028MR788292

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.