Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena

José M. Arrieta[1]; Anibal Rodriguez-Bernal[1]; Philippe Souplet[2]

  • [1] Departamento de Matemática Aplicada Universidad Complutense 28040 Madrid, Spain
  • [2] Département de Mathématiques INSSET Université de Picardie 02109 St-Quentin, France and Laboratoire de Mathématiques Appliquées UMR CNRS 7641 Université de Versailles 45 avenue des Etats-Unis 78035 Versailles, France

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 1, page 1-15
  • ISSN: 0391-173X

Abstract

top
We consider a one-dimensional semilinear parabolic equation with a gradient nonlinearity. We provide a complete classification of large time behavior of the classical solutions : either the space derivative blows up in finite time (with itself remaining bounded), or is global and converges in norm to the unique steady state. The main difficulty is to prove boundedness of all global solutions. To do so, we explicitly compute a nontrivial Lyapunov functional by carrying out the method of Zelenyak. After deriving precise estimates on the solutions and on the Lyapunov functional, we proceed by contradiction by showing that any unbounded global solution should converge to a singular stationary solution, which does not exist. As a consequence of our results, we exhibit the following interesting situation: – the trajectories starting from some bounded set of initial data in describe an unbounded set, although each of them is individually bounded and converges to the same limit; – the existence time is not a continuous function of the initial data.

How to cite

top

Arrieta, José M., Rodriguez-Bernal, Anibal, and Souplet, Philippe. "Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.1 (2004): 1-15. <http://eudml.org/doc/84526>.

@article{Arrieta2004,
abstract = {We consider a one-dimensional semilinear parabolic equation with a gradient nonlinearity. We provide a complete classification of large time behavior of the classical solutions $u$: either the space derivative $u_x$ blows up in finite time (with $u$ itself remaining bounded), or $u$ is global and converges in $C^1$ norm to the unique steady state. The main difficulty is to prove $C^1$ boundedness of all global solutions. To do so, we explicitly compute a nontrivial Lyapunov functional by carrying out the method of Zelenyak. After deriving precise estimates on the solutions and on the Lyapunov functional, we proceed by contradiction by showing that any $C^1$ unbounded global solution should converge to a singular stationary solution, which does not exist. As a consequence of our results, we exhibit the following interesting situation: – the trajectories starting from some bounded set of initial data in $C^1$ describe an unbounded set, although each of them is individually bounded and converges to the same limit; – the existence time $T^*$ is not a continuous function of the initial data.},
affiliation = {Departamento de Matemática Aplicada Universidad Complutense 28040 Madrid, Spain; Departamento de Matemática Aplicada Universidad Complutense 28040 Madrid, Spain; Département de Mathématiques INSSET Université de Picardie 02109 St-Quentin, France and Laboratoire de Mathématiques Appliquées UMR CNRS 7641 Université de Versailles 45 avenue des Etats-Unis 78035 Versailles, France},
author = {Arrieta, José M., Rodriguez-Bernal, Anibal, Souplet, Philippe},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {1-15},
publisher = {Scuola Normale Superiore, Pisa},
title = {Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena},
url = {http://eudml.org/doc/84526},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Arrieta, José M.
AU - Rodriguez-Bernal, Anibal
AU - Souplet, Philippe
TI - Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 1
SP - 1
EP - 15
AB - We consider a one-dimensional semilinear parabolic equation with a gradient nonlinearity. We provide a complete classification of large time behavior of the classical solutions $u$: either the space derivative $u_x$ blows up in finite time (with $u$ itself remaining bounded), or $u$ is global and converges in $C^1$ norm to the unique steady state. The main difficulty is to prove $C^1$ boundedness of all global solutions. To do so, we explicitly compute a nontrivial Lyapunov functional by carrying out the method of Zelenyak. After deriving precise estimates on the solutions and on the Lyapunov functional, we proceed by contradiction by showing that any $C^1$ unbounded global solution should converge to a singular stationary solution, which does not exist. As a consequence of our results, we exhibit the following interesting situation: – the trajectories starting from some bounded set of initial data in $C^1$ describe an unbounded set, although each of them is individually bounded and converges to the same limit; – the existence time $T^*$ is not a continuous function of the initial data.
LA - eng
UR - http://eudml.org/doc/84526
ER -

References

top
  1. [1] N. Alaa, Solutions faibles d’équations paraboliques quasi-linéaires avec données initiales mesures, Ann. Math. Blaise-Pascal 3 (1996) 1–15. Zbl0882.35027MR1435312
  2. [2] N. Alikakos – P. Bates – C. Grant, Blow up for a diffusion-advection equation, Proc. Roy. Soc. Edinburgh A 113 (1989), 181–190. Zbl0707.35018MR1037724
  3. [3] S. Angenent – M. Fila, Interior gradient blow-up in a semilinear parabolic equation, Differential Integral Equations 9 (1996), 865–877. Zbl0864.35052MR1392084
  4. [4] G. Barles – F. Da Lio, On the generalized Dirichlet for viscous Hamilton-Jacobi equations, J. Math. Pures et Appl., to appear. Zbl1056.35071
  5. [5] M. Benachour – S. Dabuleanu, The mixed Cauchy-Dirichlet for a viscous Hamilton-Jacobi equation, Adv. Differential Equations, to appear. Zbl1101.35043MR2125405
  6. [6] M. Ben-Artzi – Ph. Souplet – F. B. Weissler, The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pures et Appl. 81 (2002) 343–378. Zbl1046.35046MR1967353
  7. [7] T. Cazenave – P.-L. Lions, Solutions globales d’equations de la chaleur semilinéaires, Commun. Partial Differential Equations 9 (1984), 955–978. Zbl0555.35067MR755928
  8. [8] C.-N. Chen, Infinite time blow-up of solutions to a nonlinear parabolic problem, J. Differential Equations 139 (1997), 409–427. Zbl0887.35079MR1472354
  9. [9] G. Conner – C. Grant, Asymptotics of blowup for a convection-diffusion equation with conservation, Differential Integral Equations 9 (1996), 719–728. Zbl0856.35011MR1401433
  10. [10] S. Dabuleanu, “Problèmes aux limites pour les équations de Hamilton-Jacobi avec viscosité et données initiales peu regulières”, PhD thesis, Université Nancy 1, 2003. 
  11. [11] K. Deng, Stabilization of solutions of a nonlinear parabolic equation with a gradient term, Math. Z., 216 (1994), 147–155. Zbl0798.35077MR1273470
  12. [12] M. Fila – B. Kawohl, Is quenching in infinite time possible ?, Quart. Appl. Math. 8 (1990), 531–534. Zbl0737.35005MR1074968
  13. [13] M. Fila – G. Lieberman, Derivative blow-up and beyond for quasilinear parabolic equations, Differential Integral Equations 7 (1994), 811–821. Zbl0811.35059MR1270105
  14. [14] M. Fila – P. Sacks, The transition from decay to blow-up in some reaction-diffusion-convection equations, World Congress of Nonlinear Analysts ’92, Vol. I–IV (Tampa, FL, 1992), 455–463, de Gruyter, Berlin, 1996. Zbl0849.35057MR1389096
  15. [15] M. Fila – Ph. Souplet – F. B. Weissler, Linear and nonlinear heat equations in spaces and universal bounds for global solutions, Math. Ann. 320 (2001), 87–113. Zbl0993.35023MR1835063
  16. [16] V. Galaktionov – J.-L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997), 1–67. Zbl0874.35057
  17. [17] Y. Giga, A bound for global solutions of semi-linear heat equations, Comm. Math. Phys. 103 (1986), 415–421. Zbl0595.35057MR832917
  18. [18] M. Kardar – G. Parisi – Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889–892. Zbl1101.82329
  19. [19] O. Ladyzenskaya – V. A. Solonnikov – N. N. Uralceva, “Linear and Quasilinear Equations of Parabolic Type”, Amer. Math. Soc. Translations, Providence, RI, 1967. Zbl0174.15403MR241822
  20. [20] G. Lieberman, The first initial-boundary value problem for quasilinear second order parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986), 347–387. Zbl0655.35047MR881097
  21. [21] P. L. Lions, “Generalized solutions of Hamilton-Jacobi Equations”, Pitman Research Notes in Math. 62, 1982. Zbl0497.35001MR667669
  22. [22] W.-M. Ni – P. E. Sacks – J. Tavantzis, On the asymptotic behavior of solutions of certain quasi-linear equations of parabolic type, J. Differential Equations 54 (1984), 97–120. Zbl0565.35053MR756548
  23. [23] P. Quittner, A priori bounds for global solutions of a semilinear parabolic problem, Acta Math. Univ. Comenianae 68 (1999), 195–203. Zbl0940.35112MR1757788
  24. [24] P. Quittner, Universal bound for global positive solutions of a superlinear parabolic problem, Math. Ann. 320 (2001), 299–305. Zbl0981.35010MR1839765
  25. [25] P. Quittner, Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math. 29 (2003), 757–799. Zbl1034.35013MR1998164
  26. [26] P. Quittner – Ph. Souplet – M. Winkler, Initial blow-up rates and universal bounds for nonlinear heat equations, J. Differential Equations, to appear. Zbl1044.35027MR2028111
  27. [27] Ph. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities, Electronic J. Differential Equations 20 (2001), 1–19. Zbl0982.35054MR1824790
  28. [28] Ph. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differential Integral Equations 15 (2002), 237–256. Zbl1015.35016MR1870471
  29. [29] Ph. Souplet – F. B. Weissler, Poincaré’s inequality and global solutions of a nonlinear parabolic equation, Ann. Inst. H. Poincaré, Anal. Non linéaire 16 (1999), 337–373. Zbl0924.35065MR1687278
  30. [30] T. I. Zelenyak, Stabilisation of solutions of boundary value problems for a second-order equation with one space variable, Differential Equations 4 (1968), 17–22. Zbl0232.35053

NotesEmbed ?

top

You must be logged in to post comments.