Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena
José M. Arrieta[1]; Anibal Rodriguez-Bernal[1]; Philippe Souplet[2]
- [1] Departamento de Matemática Aplicada Universidad Complutense 28040 Madrid, Spain
- [2] Département de Mathématiques INSSET Université de Picardie 02109 St-Quentin, France and Laboratoire de Mathématiques Appliquées UMR CNRS 7641 Université de Versailles 45 avenue des Etats-Unis 78035 Versailles, France
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)
- Volume: 3, Issue: 1, page 1-15
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topArrieta, José M., Rodriguez-Bernal, Anibal, and Souplet, Philippe. "Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.1 (2004): 1-15. <http://eudml.org/doc/84526>.
@article{Arrieta2004,
abstract = {We consider a one-dimensional semilinear parabolic equation with a gradient nonlinearity. We provide a complete classification of large time behavior of the classical solutions $u$: either the space derivative $u_x$ blows up in finite time (with $u$ itself remaining bounded), or $u$ is global and converges in $C^1$ norm to the unique steady state. The main difficulty is to prove $C^1$ boundedness of all global solutions. To do so, we explicitly compute a nontrivial Lyapunov functional by carrying out the method of Zelenyak. After deriving precise estimates on the solutions and on the Lyapunov functional, we proceed by contradiction by showing that any $C^1$ unbounded global solution should converge to a singular stationary solution, which does not exist. As a consequence of our results, we exhibit the following interesting situation: – the trajectories starting from some bounded set of initial data in $C^1$ describe an unbounded set, although each of them is individually bounded and converges to the same limit; – the existence time $T^*$ is not a continuous function of the initial data.},
affiliation = {Departamento de Matemática Aplicada Universidad Complutense 28040 Madrid, Spain; Departamento de Matemática Aplicada Universidad Complutense 28040 Madrid, Spain; Département de Mathématiques INSSET Université de Picardie 02109 St-Quentin, France and Laboratoire de Mathématiques Appliquées UMR CNRS 7641 Université de Versailles 45 avenue des Etats-Unis 78035 Versailles, France},
author = {Arrieta, José M., Rodriguez-Bernal, Anibal, Souplet, Philippe},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {1-15},
publisher = {Scuola Normale Superiore, Pisa},
title = {Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena},
url = {http://eudml.org/doc/84526},
volume = {3},
year = {2004},
}
TY - JOUR
AU - Arrieta, José M.
AU - Rodriguez-Bernal, Anibal
AU - Souplet, Philippe
TI - Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 1
SP - 1
EP - 15
AB - We consider a one-dimensional semilinear parabolic equation with a gradient nonlinearity. We provide a complete classification of large time behavior of the classical solutions $u$: either the space derivative $u_x$ blows up in finite time (with $u$ itself remaining bounded), or $u$ is global and converges in $C^1$ norm to the unique steady state. The main difficulty is to prove $C^1$ boundedness of all global solutions. To do so, we explicitly compute a nontrivial Lyapunov functional by carrying out the method of Zelenyak. After deriving precise estimates on the solutions and on the Lyapunov functional, we proceed by contradiction by showing that any $C^1$ unbounded global solution should converge to a singular stationary solution, which does not exist. As a consequence of our results, we exhibit the following interesting situation: – the trajectories starting from some bounded set of initial data in $C^1$ describe an unbounded set, although each of them is individually bounded and converges to the same limit; – the existence time $T^*$ is not a continuous function of the initial data.
LA - eng
UR - http://eudml.org/doc/84526
ER -
References
top- [1] N. Alaa, Solutions faibles d’équations paraboliques quasi-linéaires avec données initiales mesures, Ann. Math. Blaise-Pascal 3 (1996) 1–15. Zbl0882.35027MR1435312
- [2] N. Alikakos – P. Bates – C. Grant, Blow up for a diffusion-advection equation, Proc. Roy. Soc. Edinburgh A 113 (1989), 181–190. Zbl0707.35018MR1037724
- [3] S. Angenent – M. Fila, Interior gradient blow-up in a semilinear parabolic equation, Differential Integral Equations 9 (1996), 865–877. Zbl0864.35052MR1392084
- [4] G. Barles – F. Da Lio, On the generalized Dirichlet for viscous Hamilton-Jacobi equations, J. Math. Pures et Appl., to appear. Zbl1056.35071
- [5] M. Benachour – S. Dabuleanu, The mixed Cauchy-Dirichlet for a viscous Hamilton-Jacobi equation, Adv. Differential Equations, to appear. Zbl1101.35043MR2125405
- [6] M. Ben-Artzi – Ph. Souplet – F. B. Weissler, The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pures et Appl. 81 (2002) 343–378. Zbl1046.35046MR1967353
- [7] T. Cazenave – P.-L. Lions, Solutions globales d’equations de la chaleur semilinéaires, Commun. Partial Differential Equations 9 (1984), 955–978. Zbl0555.35067MR755928
- [8] C.-N. Chen, Infinite time blow-up of solutions to a nonlinear parabolic problem, J. Differential Equations 139 (1997), 409–427. Zbl0887.35079MR1472354
- [9] G. Conner – C. Grant, Asymptotics of blowup for a convection-diffusion equation with conservation, Differential Integral Equations 9 (1996), 719–728. Zbl0856.35011MR1401433
- [10] S. Dabuleanu, “Problèmes aux limites pour les équations de Hamilton-Jacobi avec viscosité et données initiales peu regulières”, PhD thesis, Université Nancy 1, 2003.
- [11] K. Deng, Stabilization of solutions of a nonlinear parabolic equation with a gradient term, Math. Z., 216 (1994), 147–155. Zbl0798.35077MR1273470
- [12] M. Fila – B. Kawohl, Is quenching in infinite time possible ?, Quart. Appl. Math. 8 (1990), 531–534. Zbl0737.35005MR1074968
- [13] M. Fila – G. Lieberman, Derivative blow-up and beyond for quasilinear parabolic equations, Differential Integral Equations 7 (1994), 811–821. Zbl0811.35059MR1270105
- [14] M. Fila – P. Sacks, The transition from decay to blow-up in some reaction-diffusion-convection equations, World Congress of Nonlinear Analysts ’92, Vol. I–IV (Tampa, FL, 1992), 455–463, de Gruyter, Berlin, 1996. Zbl0849.35057MR1389096
- [15] M. Fila – Ph. Souplet – F. B. Weissler, Linear and nonlinear heat equations in spaces and universal bounds for global solutions, Math. Ann. 320 (2001), 87–113. Zbl0993.35023MR1835063
- [16] V. Galaktionov – J.-L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997), 1–67. Zbl0874.35057
- [17] Y. Giga, A bound for global solutions of semi-linear heat equations, Comm. Math. Phys. 103 (1986), 415–421. Zbl0595.35057MR832917
- [18] M. Kardar – G. Parisi – Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889–892. Zbl1101.82329
- [19] O. Ladyzenskaya – V. A. Solonnikov – N. N. Uralceva, “Linear and Quasilinear Equations of Parabolic Type”, Amer. Math. Soc. Translations, Providence, RI, 1967. Zbl0174.15403MR241822
- [20] G. Lieberman, The first initial-boundary value problem for quasilinear second order parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986), 347–387. Zbl0655.35047MR881097
- [21] P. L. Lions, “Generalized solutions of Hamilton-Jacobi Equations”, Pitman Research Notes in Math. 62, 1982. Zbl0497.35001MR667669
- [22] W.-M. Ni – P. E. Sacks – J. Tavantzis, On the asymptotic behavior of solutions of certain quasi-linear equations of parabolic type, J. Differential Equations 54 (1984), 97–120. Zbl0565.35053MR756548
- [23] P. Quittner, A priori bounds for global solutions of a semilinear parabolic problem, Acta Math. Univ. Comenianae 68 (1999), 195–203. Zbl0940.35112MR1757788
- [24] P. Quittner, Universal bound for global positive solutions of a superlinear parabolic problem, Math. Ann. 320 (2001), 299–305. Zbl0981.35010MR1839765
- [25] P. Quittner, Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math. 29 (2003), 757–799. Zbl1034.35013MR1998164
- [26] P. Quittner – Ph. Souplet – M. Winkler, Initial blow-up rates and universal bounds for nonlinear heat equations, J. Differential Equations, to appear. Zbl1044.35027MR2028111
- [27] Ph. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities, Electronic J. Differential Equations 20 (2001), 1–19. Zbl0982.35054MR1824790
- [28] Ph. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differential Integral Equations 15 (2002), 237–256. Zbl1015.35016MR1870471
- [29] Ph. Souplet – F. B. Weissler, Poincaré’s inequality and global solutions of a nonlinear parabolic equation, Ann. Inst. H. Poincaré, Anal. Non linéaire 16 (1999), 337–373. Zbl0924.35065MR1687278
- [30] T. I. Zelenyak, Stabilisation of solutions of boundary value problems for a second-order equation with one space variable, Differential Equations 4 (1968), 17–22. Zbl0232.35053
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.