Minoration du temps d'existence pour l'équation de Klein-Gordon non-linéaire en dimension 1 d'espace

J.-M. Delort

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 5, page 563-591
  • ISSN: 0294-1449

How to cite

top

Delort, J.-M.. "Minoration du temps d'existence pour l'équation de Klein-Gordon non-linéaire en dimension 1 d'espace." Annales de l'I.H.P. Analyse non linéaire 16.5 (1999): 563-591. <http://eudml.org/doc/78475>.

@article{Delort1999,
author = {Delort, J.-M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {semilinear Klein-Gordon; quadratic nonlinearity; Cauchy data; existence time; asymptotic solution; approximate solution},
language = {fre},
number = {5},
pages = {563-591},
publisher = {Gauthier-Villars},
title = {Minoration du temps d'existence pour l'équation de Klein-Gordon non-linéaire en dimension 1 d'espace},
url = {http://eudml.org/doc/78475},
volume = {16},
year = {1999},
}

TY - JOUR
AU - Delort, J.-M.
TI - Minoration du temps d'existence pour l'équation de Klein-Gordon non-linéaire en dimension 1 d'espace
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 5
SP - 563
EP - 591
LA - fre
KW - semilinear Klein-Gordon; quadratic nonlinearity; Cauchy data; existence time; asymptotic solution; approximate solution
UR - http://eudml.org/doc/78475
ER -

References

top
  1. [1] S. Alinhac, Blow-up for nonlinear hyperbolic equations, Progress in Nonlinear Differential Zbl0820.35001
  2. Equations and their Applications, Birkäuser, Boston, 1995. 
  3. [2] S. Alinhac, Explosion des solutions d'une équation d'onde quasi-linéaire en deux 
  4. dimensions d'espace, Comm. Partial Diff. Eq.21 (5,6), (1996), 923-969. MR1391528
  5. [3] S. Alinhac, Blow-up of small data solutions for a class of quasilinear wave equations in Zbl0896.35087
  6. two space dimensions I, preprint, Université Paris-Sud, 1996. 
  7. [4] S. Alinhac, Blow-up of small data solutions for a class of quasilinear wave equations in 
  8. two space dimensions II, preprint, Université Paris-Sud, 1997. 
  9. [5] D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math.39, (1986), 267-282. Zbl0612.35090MR820070
  10. [6] R. Coifman et Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque57, 1978. Zbl0483.35082MR518170
  11. [7] V. Georgiev, Decay estimates for the Klein-Gordon equations, Comm. Partial Diff. Eq.17, (1992), 1111-1139. Zbl0767.35068MR1179280
  12. [8] V. Georgiev et B. Yordanov, Asymptotic behaviour of the one-dimensional Klein-Gordon 
  13. equation with a cubic nonlinearity, preprint, 1997. 
  14. [9] L. Hörmander, The lifespan of classical solutions of nonlinear hyperbolic equations, Springer Lectures Notes in Math.1256, (1987), 214-280. Zbl0632.35045MR897781
  15. [10] L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques et Applications26, Springer, 1997. Zbl0881.35001MR1466700
  16. [11] F. John, Blow-up of radial solutions of utt = c2 (ut)Δu in three space dimensions, Mat. Appl. Comput.4, (1985), 3-18. Zbl0597.35082MR808321
  17. [12] F. John et S. Klainerman : Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math.37, (1984), 443-455. Zbl0599.35104MR745325
  18. [13] S. Klainerman, Global existence for nonlinear wave equations, Comm. Pure Appl. Math.33, (1980), 43-101. Zbl0405.35056MR544044
  19. [14] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math38, (1985), 321-332. Zbl0635.35059MR784477
  20. [15] S. Klainerman, The null condition and global existence to nonlinear wave equations, Lectures in Applied Mathematics23, (1986), 293-326. Zbl0599.35105MR837683
  21. [16] S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math.38, (1985) 631-641. Zbl0597.35100MR803252
  22. [17] K. Moriyama, Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one-space dimension, Diff. Int. Equations10, n° 3, (1997), 499-520. Zbl0891.35096MR1744859
  23. [18] K. Moriyama, S. Tonegawa et Y. Tsutsumi, Almost Global Existence of Solutions for the Quadratic Semilinear Klein-Gordon Equation in One Space Dimension, Funkcialaj Ekvacioj40, n° 2, (1997) 313-333. Zbl0891.35142MR1480281
  24. [19] T. Ozawa, K. Tsutaya et Y. Tsutsumi, Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z, 222, (1996) 341-362. Zbl0877.35030MR1400196
  25. [20] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math.38, (1985) 685-696. Zbl0597.35101MR803256
  26. [21] J.C.H. Simon et E. Taflin, The Cauchy problem for nonlinear Klein-Gordon equations, Commun. Math. Phys.152, (1993) 433-478. Zbl0783.35066MR1213298
  27. [22] K. Yagi, Normal forms and nonlinear Klein-Gordon equations in one space dimension, Master thesis, Waseda University, 1994. 
  28. [23] B. Yordanov, Blow-up for the one-dimensional Klein-Gordon equation with a cubic nonlinearity, preprint, 1996. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.