Existence globale et comportement asymptotique pour l'équation de Klein–Gordon quasi linéaire à données petites en dimension 1

Jean-Marc Delort

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 1, page 1-61
  • ISSN: 0012-9593

How to cite

top

Delort, Jean-Marc. "Existence globale et comportement asymptotique pour l'équation de Klein–Gordon quasi linéaire à données petites en dimension 1." Annales scientifiques de l'École Normale Supérieure 34.1 (2001): 1-61. <http://eudml.org/doc/82538>.

@article{Delort2001,
author = {Delort, Jean-Marc},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {quasilinear Klein-Gordon equation; Cauchy problem; sufficient global existence condition; asymptotic behavior; paradifferential normal forms},
language = {fre},
number = {1},
pages = {1-61},
publisher = {Elsevier},
title = {Existence globale et comportement asymptotique pour l'équation de Klein–Gordon quasi linéaire à données petites en dimension 1},
url = {http://eudml.org/doc/82538},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Delort, Jean-Marc
TI - Existence globale et comportement asymptotique pour l'équation de Klein–Gordon quasi linéaire à données petites en dimension 1
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 1
SP - 1
EP - 61
LA - fre
KW - quasilinear Klein-Gordon equation; Cauchy problem; sufficient global existence condition; asymptotic behavior; paradifferential normal forms
UR - http://eudml.org/doc/82538
ER -

References

top
  1. [1] Alinhac S., Blow-up of small data solutions for a quasilinear wave equation in two space dimensions, Ann. of Math. (2)149 (1) (1997) 97-127. Zbl1080.35043MR1680539
  2. [2] Alinhac S., Blow-up of small data solutions for a class of quasilinear wave equations in two space dimensions II, Acta Math.182 (1) (1999) 1-23. Zbl0973.35135MR1687180
  3. [3] Bony J.-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4)14 (2) (1981) 209-246. Zbl0495.35024MR631751
  4. [4] Chemin J.-Y., Interaction contrôlée dans les équations aux dérivées partielles non linéaires, Bull. Soc. Math. France116 (3) (1988) 341-383. Zbl0675.35060MR984901
  5. [5] Chemin J.-Y., Fluides parfaits incompressibles, Astérisque, 230, 1995, 177 p. Zbl0829.76003MR1340046
  6. [6] Christodoulou D., Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math.39 (1986) 267-282. Zbl0612.35090MR820070
  7. [7] Delort J.-M., Minoration du temps d'existence pour l'équation de Klein–Gordon non linéaire en dimension 1 d'espace, Ann. Inst. Henri-Poincaré, Analyse non linéaire16 (5) (1999) 563-591. Zbl0937.35160
  8. [8] Georgiev V., Yordanov B., Asymptotic behaviour of the one-dimensional Klein–Gordon equation with a cubic nonlinearity, Preprint, 1997. 
  9. [9] Hörmander L., The lifespan of classical solutions of nonlinear hyperbolic equations, in: Lectures Notes in Math., 1256, Springer-Verlag, 1987, pp. 214-280. Zbl0632.35045MR897781
  10. [10] Hörmander L., Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques et Applications, 26, Springer-Verlag, 1997. Zbl0881.35001MR1466700
  11. [11] Keel M., Tao T., Small data blow-up for semilinear Klein–Gordon equations, Amer. J. Math.121 (3) (1999) 629-669. Zbl0931.35105
  12. [12] Klainerman S., Global existence of small amplitude solutions to nonlinear Klein–Gordon equations in four space-time dimensions, Comm. Pure Appl. Math.38 (1985) 631-641. Zbl0597.35100
  13. [13] Klainerman S., The null condition and global existence to nonlinear wave equations, in: Lectures in Applied Mathematics, 23, 1986, pp. 293-326. Zbl0599.35105MR837683
  14. [14] Klainerman S., Remark on the asymptotic behavior of the Klein–Gordon equation in Rn+1, Comm. Pure Appl. Math.46 (2) (1993) 137-144. Zbl0805.35104
  15. [15] Ladhari R., Petites solutions d'équations d'ondes quasi linéaires en dimension deux d'espace, Thèse, Université Paris-Sud, 1999. 
  16. [16] Lindblad H., Sogge C., Restriction theorems and semilinear Klein–Gordon equations in (1+3)-dimensions, Duke Math. J.85 (1) (1996) 227-252. Zbl0865.35077
  17. [17] Moriyama K., Normal forms and global existence of solutions to a class of cubic nonlinear Klein–Gordon equations in one-space dimension, Differential Integral Equations10 (3) (1997) 499-520. Zbl0891.35096
  18. [18] Moriyama K., Tonegawa S., Tsutsumi Y., Almost global existence of solutions for the quadratic semilinear Klein–Gordon equation in one space dimension, Funkcialaj Ekvacioj40 (2) (1997) 313-333. Zbl0891.35142
  19. [19] Ozawa T., Tsutaya K., Tsutsumi Y., Global existence and asymptotic behavior of solutions for the Klein–Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z.222 (1996) 341-362. Zbl0877.35030
  20. [20] Shatah J., Normal forms and quadratic nonlinear Klein–Gordon equations, Comm. Pure Appl. Math.38 (1985) 685-696. Zbl0597.35101
  21. [21] Simon J.C.H., Taflin E., The Cauchy problem for nonlinear Klein–Gordon equations, Comm. Math. Phys.152 (1993) 433-478. Zbl0783.35066
  22. [22] Yagi K., Normal forms and nonlinear Klein–Gordon equations in one space dimension, Master thesis, Waseda University, 1994. 
  23. [23] Yordanov B., Blow-up for the one-dimensional Klein–Gordon equation with a cubic nonlinearity, Preprint, 1996. 

Citations in EuDML Documents

top
  1. Jean-Marc Delort, Erratum to : “Existence globale et comportement asymptotique pour l'équation de Klein–Gordon quasi linéaire à données petites en dimension 1”
  2. Anne-Sophie de Suzzoni, On the persistence of decorrelation in the theory of wave turbulence
  3. Jean-Marc Delort, Jérémie Szeftel, Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces
  4. Jean-Marc Delort, Jérémie Szeftel, Almost global solutions for non hamiltonian semi-linear Klein-Gordon equations on compact revolution hypersurfaces
  5. Serge Alinhac, Un exemple d’explosion à l’infini pour une équation d’ondes quasi-linéaire
  6. Jérémie Szeftel, Propagation et réflexion des singularités pour l'équation de Schrödinger non linéaire

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.