A nonlinear oblique derivative boundary value problem for the heat equation. Part 2 : singular self-similar solutions

Florian Mehats; Jean-Michel Roquejoffre

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 6, page 691-724
  • ISSN: 0294-1449

How to cite

top

Mehats, Florian, and Roquejoffre, Jean-Michel. "A nonlinear oblique derivative boundary value problem for the heat equation. Part 2 : singular self-similar solutions." Annales de l'I.H.P. Analyse non linéaire 16.6 (1999): 691-724. <http://eudml.org/doc/78480>.

@article{Mehats1999,
author = {Mehats, Florian, Roquejoffre, Jean-Michel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {plasma physics; discontinuities; continuity properties},
language = {eng},
number = {6},
pages = {691-724},
publisher = {Gauthier-Villars},
title = {A nonlinear oblique derivative boundary value problem for the heat equation. Part 2 : singular self-similar solutions},
url = {http://eudml.org/doc/78480},
volume = {16},
year = {1999},
}

TY - JOUR
AU - Mehats, Florian
AU - Roquejoffre, Jean-Michel
TI - A nonlinear oblique derivative boundary value problem for the heat equation. Part 2 : singular self-similar solutions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 6
SP - 691
EP - 724
LA - eng
KW - plasma physics; discontinuities; continuity properties
UR - http://eudml.org/doc/78480
ER -

References

top
  1. [1] R. Adams, Sobolev spaces, Acad. Press, 1975. Zbl0314.46030MR450957
  2. [2] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I and II, Comm. Pure Appl. Math., 12, 1959, pp. 623-727; 17, 1964, pp. 35-92. Zbl0093.10401MR162050
  3. [3] G. Barles, Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations. J. Diff. Equations, Vol. 106, No. 1, 1993, pp. 90-106.. Zbl0786.35051MR1249178
  4. [4] A. Chuvatin, Thèse de doctorat de l'École polytechnique, 1994. 
  5. [5] M.G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order Partial differential equations. Bull. Amer. Soc,. 27, 1992, pp. 1-67. Zbl0755.35015MR1118699
  6. [6] L.C. Evans and R. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Math., CRC Press, Ann Arbor, 1992. Zbl0804.28001MR1158660
  7. [7] A.V. Gordeev, A.V. Grechikha and Y.L. Kalda, Rapid penetration of a magnetic field into a plasma along an electrode, Sov. J. Plasma Phys., 16, Vol. 1, 1990, pp. 55-57. 
  8. [8] R.J. Leveque, Numerical Methods for Conservation Laws, Lectures in Mathematics, Birkhäuser Verlag, 1990. Zbl0723.65067MR1077828
  9. [9] G. Lieberman and N. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. A.M.S, Vol. 295, 1986, pp. 509-546. Zbl0619.35047MR833695
  10. [10] P.-L. Lions and P.E. Souganidis, Convergence of MUSCL type methods for scalar conservation laws, C.R. Acad. Sci. Paris, Vol. 311, 1990, Série I, pp. 259-264. Zbl0712.65082MR1071622
  11. [11] F. Méhats, Thèse de doctorat de l'École polytechnique, 1997. 
  12. [12] F. Méhats and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation. Part 1: Basic results, to appear in Ann. IHP,Analyse Non Linéaire. Zbl0922.35072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.