A nonlinear oblique derivative boundary value problem for the heat equation : analogy with the porous medium equation

Luis A Caffarelli; Jean-Michel Roquejoffre

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 1, page 41-80
  • ISSN: 0294-1449

How to cite

top

Caffarelli, Luis A, and Roquejoffre, Jean-Michel. "A nonlinear oblique derivative boundary value problem for the heat equation : analogy with the porous medium equation." Annales de l'I.H.P. Analyse non linéaire 19.1 (2002): 41-80. <http://eudml.org/doc/78539>.

@article{Caffarelli2002,
author = {Caffarelli, Luis A, Roquejoffre, Jean-Michel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {travelling waves; viscosity solutions; Harnack inequalities; compact support for solutions; finite speed of propagation; free boundary relations; convergence to self-similar solutions},
language = {eng},
number = {1},
pages = {41-80},
publisher = {Elsevier},
title = {A nonlinear oblique derivative boundary value problem for the heat equation : analogy with the porous medium equation},
url = {http://eudml.org/doc/78539},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Caffarelli, Luis A
AU - Roquejoffre, Jean-Michel
TI - A nonlinear oblique derivative boundary value problem for the heat equation : analogy with the porous medium equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 1
SP - 41
EP - 80
LA - eng
KW - travelling waves; viscosity solutions; Harnack inequalities; compact support for solutions; finite speed of propagation; free boundary relations; convergence to self-similar solutions
UR - http://eudml.org/doc/78539
ER -

References

top
  1. [1] Aronson D.G., Bénilan P., Régularité des solutions de l'équation des milieux poreux dans RN, C. R. Acad. Sci. Paris288 (1979) 103-105. Zbl0397.35034MR524760
  2. [2] Aronson D.G., Caffarelli L.A., Kamin S., How an initially stationary interface begins to move in porous medium flow, SIAM J. Math. Anal.14 (1983) 639-658. Zbl0542.76119MR704481
  3. [3] Atkinson F.V., Peletier L.A., Similarity profiles of flows through porous media, Arch. Rational Mech. Anal.42 (1971) 369-379. Zbl0249.35043MR334666
  4. [4] Atkinson F.V., Peletier L.A., Similarity solutions of the nonlinear diffusion equation, Arch. Rational Mech. Anal.54 (1974) 373-392. Zbl0293.35039MR344559
  5. [5] Audounet J., Giovangigli V., Roquejoffre J.-M., A threshold phenomenon arising in the propagation of a spherical flame, Physica D121 (1998) 295-316. Zbl0938.80003MR1645427
  6. [6] Caffarelli L.A., A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are C1,α, Rev. Mat. Iberoamericana3 (1987) 39-62. Zbl0676.35085
  7. [7] Caffarelli L.A., Vazquez J.-L., Viscosity solutions for the porous medium equation, in: Differential Equations: La Pietra 1996 (Florence), Proc. Sympos. Pure Math., 65, American Mathematical Society, Providence, RI, 1999. Zbl0929.35072MR1662747
  8. [8] Caffarelli L.A., Vazquez J.-L., Wolanski N.I., Lipschitz continuity of solutions and interfaces in the N-dimensional porous medium equation, Indiana Univ. Math. J.36 (1987) 373-401. Zbl0644.35058MR891781
  9. [9] Caffarelli L.A., Wolanski N.I., C1,α regularity of the free boundary for the N-dimensional porous media equation, Comm. Pure Appl. Math.43 (1990) 885-902. Zbl0728.76103
  10. [10] Clément P., Gripenberg G., Londen S.-O., Hölder regularity for a linear fractional evolution equation, in: Topics in Nonlinear Analysis, H. Amann Anniversary Volume, Birkhäuser, 1999, pp. 69-82. Zbl0920.35004MR1725566
  11. [11] Gorenflo R., Vessela S., Abel Integral Equations, Springer, New York, 1991. Zbl0717.45002MR1095269
  12. [12] Gordeev A.V., Grechikha A.V., Kalda Y.L., Rapid penetration of a magnetic field into a plasma along an electrode, Sov. J. Plasma Phys.16 (1) (1990) 55-57. 
  13. [13] Gripenberg G., Londen S.-O., Fractional derivatives and smoothing in nonlinear conservation laws, Diff. Int. Eq.8 (1995) 1961-1976. Zbl0885.45005MR1348960
  14. [14] Henry D., Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981. Zbl0456.35001MR610244
  15. [15] Ladyzhenskaya O.A., Ural'tceva N.N., Solonnikov V.A., Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968. Zbl0174.15403
  16. [16] Méhats F., Thèse de doctorat de l'École polytechnique, 1997. 
  17. [17] Méhats F., Roquejoffre J.-M., A nonlinear oblique derivative problem for the heat equation, Part I: Basic results, Ann. Inst. Henri Poincaré, Analyse non linéaire16 (1999) 221-253. Zbl0922.35072MR1674770
  18. [18] Méhats F., Roquejoffre J.-M., A nonlinear oblique derivative problem for the Heat equation, Part II: Singular self-similar solutions, Ann. Inst. Henri Poincaré, Analyse non linéaire16 (1999) 691-724. Zbl0945.35047MR1720513
  19. [19] Walter W., Differential Inequlities, Springer, Berlin, 1964. MR172076

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.