A nonlinear oblique derivative boundary value problem for the heat equation : analogy with the porous medium equation
Luis A Caffarelli; Jean-Michel Roquejoffre
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 1, page 41-80
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCaffarelli, Luis A, and Roquejoffre, Jean-Michel. "A nonlinear oblique derivative boundary value problem for the heat equation : analogy with the porous medium equation." Annales de l'I.H.P. Analyse non linéaire 19.1 (2002): 41-80. <http://eudml.org/doc/78539>.
@article{Caffarelli2002,
author = {Caffarelli, Luis A, Roquejoffre, Jean-Michel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {travelling waves; viscosity solutions; Harnack inequalities; compact support for solutions; finite speed of propagation; free boundary relations; convergence to self-similar solutions},
language = {eng},
number = {1},
pages = {41-80},
publisher = {Elsevier},
title = {A nonlinear oblique derivative boundary value problem for the heat equation : analogy with the porous medium equation},
url = {http://eudml.org/doc/78539},
volume = {19},
year = {2002},
}
TY - JOUR
AU - Caffarelli, Luis A
AU - Roquejoffre, Jean-Michel
TI - A nonlinear oblique derivative boundary value problem for the heat equation : analogy with the porous medium equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 1
SP - 41
EP - 80
LA - eng
KW - travelling waves; viscosity solutions; Harnack inequalities; compact support for solutions; finite speed of propagation; free boundary relations; convergence to self-similar solutions
UR - http://eudml.org/doc/78539
ER -
References
top- [1] Aronson D.G., Bénilan P., Régularité des solutions de l'équation des milieux poreux dans RN, C. R. Acad. Sci. Paris288 (1979) 103-105. Zbl0397.35034MR524760
- [2] Aronson D.G., Caffarelli L.A., Kamin S., How an initially stationary interface begins to move in porous medium flow, SIAM J. Math. Anal.14 (1983) 639-658. Zbl0542.76119MR704481
- [3] Atkinson F.V., Peletier L.A., Similarity profiles of flows through porous media, Arch. Rational Mech. Anal.42 (1971) 369-379. Zbl0249.35043MR334666
- [4] Atkinson F.V., Peletier L.A., Similarity solutions of the nonlinear diffusion equation, Arch. Rational Mech. Anal.54 (1974) 373-392. Zbl0293.35039MR344559
- [5] Audounet J., Giovangigli V., Roquejoffre J.-M., A threshold phenomenon arising in the propagation of a spherical flame, Physica D121 (1998) 295-316. Zbl0938.80003MR1645427
- [6] Caffarelli L.A., A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are C1,α, Rev. Mat. Iberoamericana3 (1987) 39-62. Zbl0676.35085
- [7] Caffarelli L.A., Vazquez J.-L., Viscosity solutions for the porous medium equation, in: Differential Equations: La Pietra 1996 (Florence), Proc. Sympos. Pure Math., 65, American Mathematical Society, Providence, RI, 1999. Zbl0929.35072MR1662747
- [8] Caffarelli L.A., Vazquez J.-L., Wolanski N.I., Lipschitz continuity of solutions and interfaces in the N-dimensional porous medium equation, Indiana Univ. Math. J.36 (1987) 373-401. Zbl0644.35058MR891781
- [9] Caffarelli L.A., Wolanski N.I., C1,α regularity of the free boundary for the N-dimensional porous media equation, Comm. Pure Appl. Math.43 (1990) 885-902. Zbl0728.76103
- [10] Clément P., Gripenberg G., Londen S.-O., Hölder regularity for a linear fractional evolution equation, in: Topics in Nonlinear Analysis, H. Amann Anniversary Volume, Birkhäuser, 1999, pp. 69-82. Zbl0920.35004MR1725566
- [11] Gorenflo R., Vessela S., Abel Integral Equations, Springer, New York, 1991. Zbl0717.45002MR1095269
- [12] Gordeev A.V., Grechikha A.V., Kalda Y.L., Rapid penetration of a magnetic field into a plasma along an electrode, Sov. J. Plasma Phys.16 (1) (1990) 55-57.
- [13] Gripenberg G., Londen S.-O., Fractional derivatives and smoothing in nonlinear conservation laws, Diff. Int. Eq.8 (1995) 1961-1976. Zbl0885.45005MR1348960
- [14] Henry D., Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981. Zbl0456.35001MR610244
- [15] Ladyzhenskaya O.A., Ural'tceva N.N., Solonnikov V.A., Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968. Zbl0174.15403
- [16] Méhats F., Thèse de doctorat de l'École polytechnique, 1997.
- [17] Méhats F., Roquejoffre J.-M., A nonlinear oblique derivative problem for the heat equation, Part I: Basic results, Ann. Inst. Henri Poincaré, Analyse non linéaire16 (1999) 221-253. Zbl0922.35072MR1674770
- [18] Méhats F., Roquejoffre J.-M., A nonlinear oblique derivative problem for the Heat equation, Part II: Singular self-similar solutions, Ann. Inst. Henri Poincaré, Analyse non linéaire16 (1999) 691-724. Zbl0945.35047MR1720513
- [19] Walter W., Differential Inequlities, Springer, Berlin, 1964. MR172076
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.