A nonlinear oblique derivative boundary value problem for the heat equation. Part 1 : basic results
Florian Mehats; Jean-Michel Roquejoffre
Annales de l'I.H.P. Analyse non linéaire (1999)
- Volume: 16, Issue: 2, page 221-253
- ISSN: 0294-1449
Access Full Article
topHow to cite
topMehats, Florian, and Roquejoffre, Jean-Michel. "A nonlinear oblique derivative boundary value problem for the heat equation. Part 1 : basic results." Annales de l'I.H.P. Analyse non linéaire 16.2 (1999): 221-253. <http://eudml.org/doc/78464>.
@article{Mehats1999,
author = {Mehats, Florian, Roquejoffre, Jean-Michel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear oblique derivative condition; self-similar solution; plasma physics; a priori estimates},
language = {eng},
number = {2},
pages = {221-253},
publisher = {Gauthier-Villars},
title = {A nonlinear oblique derivative boundary value problem for the heat equation. Part 1 : basic results},
url = {http://eudml.org/doc/78464},
volume = {16},
year = {1999},
}
TY - JOUR
AU - Mehats, Florian
AU - Roquejoffre, Jean-Michel
TI - A nonlinear oblique derivative boundary value problem for the heat equation. Part 1 : basic results
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 2
SP - 221
EP - 253
LA - eng
KW - nonlinear oblique derivative condition; self-similar solution; plasma physics; a priori estimates
UR - http://eudml.org/doc/78464
ER -
References
top- [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I and II, Comm. Pure Appl. Math., Vol. 12, 1959, pp. 623-727; Vol. 17, 1964, pp. 35-92. Zbl0093.10401MR162050
- [2] H. Amann, Quasilinear Parabolic Systems under Nonlinear Boundary Conditions, Arch. Rat. Mech. Anal., Vol. 92, 1986, pp. 153-191. Zbl0596.35061MR816618
- [3] H. Amann, Parabolic Evolution Equations and Nonlinear Boundary Conditions, J. Diff. Eq., Vol. 72, 1988, pp. 201-269. Zbl0658.34011MR932367
- [4] H. Berestycki, L.A. Caffarelli and L. Nirenberg, Uniform estimates for regularizations of free boundary problems, Analysis and partial differential equations, C. Sadosky & M. Dekker eds., 1990, pp. 567-617. Zbl0702.35252
- [5] H. Brézis, Analyse Fonctionnelle dans Mathématiques appliquées pour la maîtrise, Masson, 1983. Zbl0511.46001MR697382
- [6] A. Chuvatin, Thèse, Ecole Polytechnique, 1994.
- [7] G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations, J. Partial Diff. Eq., Vol. 1, 1988, pp. 12-42. Zbl0699.35152MR985445
- [8] A.V. Gordeev, A.V. Grechikha and Y.L. Kalda, Rapid penetration of a magnetic field into a plasma along an electrode, Sov. J. Plasma Phys., Vol. 16, 1, 1990.
- [9] A.V. Gordeev, A.S. Kingsep and L.I. Rudakov, Electron Magnetohydrodynamics, Physics Reports, Vol. 243, 5, 1994.
- [10] A.S. Kingsep, K.V. Chukbar and V.V. YAN'KOV, Reviews of Plasma Physics, Vol. 16, B. B. Kadomtsev (ed), Plenum, New-York, 1990.
- [11] O.A. Ladyženskaja, V.A. Solonnikov and N.N. URAL'CEVA, Linear and quasilinear equations of parabolic type, Transl. Math. Monographs, Vol. 23, Amer. Math. Soc., Providence R.I., 1968. Zbl0174.15403MR241822
- [12] O.A. Ladyženskaja and N.N. URAL'CEVA, Équations aux dérivées partielles de type elliptique, Monogr. Univ. Math., Dunod, Paris, 1968. [13] G. Lieberman and N. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. A.M.S, Vol. 295, 1986, pp. 509-546. MR239273
- [14] F. Méhats and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation, Part II: rapid penetration at the boundary, to appear.
- [15] A.I. Nazarov and N.N. URAL'TSEVA, A Problem with an Oblique Derivative for a Quasilinear Parabolic Equation, Zap. Nauch. Sem. S-Peterburg Otdel. Mat. Inst. Steklov (POMI), Vol. 200, 1992.
- [16] D.H. Sattinger, Monotone Methods in Nonlinear Elliptic and Parabolic Boundary Value Problems, Indiana UniversityMathematics Journal, Vol. 21, n° 11, 1972, pp. 979-1000. Zbl0223.35038MR299921
- [ 17] N.. Trudinger, On Harnack type inequalities and their applications to quasilinear problems, Comm. Pure Appl. Math., Vol. 20, 1967, pp. 721-747. Zbl0153.42703MR226198
Citations in EuDML Documents
top- Florian Mehats, Jean-Michel Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation. Part 2 : singular self-similar solutions
- Florian Mehats, Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem
- Luis A Caffarelli, Jean-Michel Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation : analogy with the porous medium equation
- Florian Mehats, Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.