A nonlinear oblique derivative boundary value problem for the heat equation. Part 1 : basic results

Florian Mehats; Jean-Michel Roquejoffre

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 2, page 221-253
  • ISSN: 0294-1449

How to cite

top

Mehats, Florian, and Roquejoffre, Jean-Michel. "A nonlinear oblique derivative boundary value problem for the heat equation. Part 1 : basic results." Annales de l'I.H.P. Analyse non linéaire 16.2 (1999): 221-253. <http://eudml.org/doc/78464>.

@article{Mehats1999,
author = {Mehats, Florian, Roquejoffre, Jean-Michel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear oblique derivative condition; self-similar solution; plasma physics; a priori estimates},
language = {eng},
number = {2},
pages = {221-253},
publisher = {Gauthier-Villars},
title = {A nonlinear oblique derivative boundary value problem for the heat equation. Part 1 : basic results},
url = {http://eudml.org/doc/78464},
volume = {16},
year = {1999},
}

TY - JOUR
AU - Mehats, Florian
AU - Roquejoffre, Jean-Michel
TI - A nonlinear oblique derivative boundary value problem for the heat equation. Part 1 : basic results
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 2
SP - 221
EP - 253
LA - eng
KW - nonlinear oblique derivative condition; self-similar solution; plasma physics; a priori estimates
UR - http://eudml.org/doc/78464
ER -

References

top
  1. [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I and II, Comm. Pure Appl. Math., Vol. 12, 1959, pp. 623-727; Vol. 17, 1964, pp. 35-92. Zbl0093.10401MR162050
  2. [2] H. Amann, Quasilinear Parabolic Systems under Nonlinear Boundary Conditions, Arch. Rat. Mech. Anal., Vol. 92, 1986, pp. 153-191. Zbl0596.35061MR816618
  3. [3] H. Amann, Parabolic Evolution Equations and Nonlinear Boundary Conditions, J. Diff. Eq., Vol. 72, 1988, pp. 201-269. Zbl0658.34011MR932367
  4. [4] H. Berestycki, L.A. Caffarelli and L. Nirenberg, Uniform estimates for regularizations of free boundary problems, Analysis and partial differential equations, C. Sadosky & M. Dekker eds., 1990, pp. 567-617. Zbl0702.35252
  5. [5] H. Brézis, Analyse Fonctionnelle dans Mathématiques appliquées pour la maîtrise, Masson, 1983. Zbl0511.46001MR697382
  6. [6] A. Chuvatin, Thèse, Ecole Polytechnique, 1994. 
  7. [7] G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations, J. Partial Diff. Eq., Vol. 1, 1988, pp. 12-42. Zbl0699.35152MR985445
  8. [8] A.V. Gordeev, A.V. Grechikha and Y.L. Kalda, Rapid penetration of a magnetic field into a plasma along an electrode, Sov. J. Plasma Phys., Vol. 16, 1, 1990. 
  9. [9] A.V. Gordeev, A.S. Kingsep and L.I. Rudakov, Electron Magnetohydrodynamics, Physics Reports, Vol. 243, 5, 1994. 
  10. [10] A.S. Kingsep, K.V. Chukbar and V.V. YAN'KOV, Reviews of Plasma Physics, Vol. 16, B. B. Kadomtsev (ed), Plenum, New-York, 1990. 
  11. [11] O.A. Ladyženskaja, V.A. Solonnikov and N.N. URAL'CEVA, Linear and quasilinear equations of parabolic type, Transl. Math. Monographs, Vol. 23, Amer. Math. Soc., Providence R.I., 1968. Zbl0174.15403MR241822
  12. [12] O.A. Ladyženskaja and N.N. URAL'CEVA, Équations aux dérivées partielles de type elliptique, Monogr. Univ. Math., Dunod, Paris, 1968. [13] G. Lieberman and N. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. A.M.S, Vol. 295, 1986, pp. 509-546. MR239273
  13. [14] F. Méhats and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation, Part II: rapid penetration at the boundary, to appear. 
  14. [15] A.I. Nazarov and N.N. URAL'TSEVA, A Problem with an Oblique Derivative for a Quasilinear Parabolic Equation, Zap. Nauch. Sem. S-Peterburg Otdel. Mat. Inst. Steklov (POMI), Vol. 200, 1992. 
  15. [16] D.H. Sattinger, Monotone Methods in Nonlinear Elliptic and Parabolic Boundary Value Problems, Indiana UniversityMathematics Journal, Vol. 21, n° 11, 1972, pp. 979-1000. Zbl0223.35038MR299921
  16. [ 17] N.. Trudinger, On Harnack type inequalities and their applications to quasilinear problems, Comm. Pure Appl. Math., Vol. 20, 1967, pp. 721-747. Zbl0153.42703MR226198

Citations in EuDML Documents

top
  1. Florian Mehats, Jean-Michel Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation. Part 2 : singular self-similar solutions
  2. Florian Mehats, Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem
  3. Luis A Caffarelli, Jean-Michel Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation : analogy with the porous medium equation
  4. Florian Mehats, Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.