On the subanalyticity of Carnot–Caratheodory distances

Andrei Agrachev; Jean-Paul Gauthier

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 3, page 359-382
  • ISSN: 0294-1449

How to cite

top

Agrachev, Andrei, and Gauthier, Jean-Paul. "On the subanalyticity of Carnot–Caratheodory distances." Annales de l'I.H.P. Analyse non linéaire 18.3 (2001): 359-382. <http://eudml.org/doc/78524>.

@article{Agrachev2001,
author = {Agrachev, Andrei, Gauthier, Jean-Paul},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Riemannian manifold; optimal controls; Carnot-Caratheodory distance},
language = {eng},
number = {3},
pages = {359-382},
publisher = {Elsevier},
title = {On the subanalyticity of Carnot–Caratheodory distances},
url = {http://eudml.org/doc/78524},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Agrachev, Andrei
AU - Gauthier, Jean-Paul
TI - On the subanalyticity of Carnot–Caratheodory distances
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 3
SP - 359
EP - 382
LA - eng
KW - Riemannian manifold; optimal controls; Carnot-Caratheodory distance
UR - http://eudml.org/doc/78524
ER -

References

top
  1. [1] Agrachev A.A, Compactness for sub-Riemannian length-minimizers and subanalyticity, Rend. Semin. Mat. Torino56 (1998). Zbl1039.53038MR1845741
  2. [2] Agrachev A.A, Gamkrelidze R.V, Sarychev A.V, Local invariants of smooth control systems, Acta Appl. Math.14 (1989) 191-237. Zbl0681.49018MR995286
  3. [3] Agrachev A.A, Sarychev A.V, Filtrations of a Lie algebra of vector fields and nilpotent approximation of control systems, Dokl. Akad. Nauk SSSR295 (1987) 777-781, English transl. in Soviet Math. Dokl. 36 (1988) 104–108. Zbl0850.93106
  4. [4] Agrachev A.A, Sarychev A.V, Abnormal sub-Riemannian geodesics: Morse index and rigidity, Annales de l'Institut Henri Poincaré, Analyse non linéaire13 (1996) 635-690. Zbl0866.58023MR1420493
  5. [5] Agrachev A.A, Sarychev A.V, Sub-Riemannian metrics: minimality of abnormal geodesics versus subanalyticity, J. ESAIM: Control, Optimisation and Calculus of Variations4 (1999) 377-403. Zbl0978.53065MR1693912
  6. [6] Agrachev A.A, Bonnard B, Chyba M, Kupka I, Sub-Riemannian sphere in Martinet flat case, J. ESAIM: Control, Optimisation and Calculus of Variations2 (1997) 377-448. Zbl0902.53033MR1483765
  7. [7] Bellaïche A, The tangent space in sub-Riemannian geometry, in: Sub-Riemannian Geometry, Birkhäuser, 1996, pp. 1-78. Zbl0862.53031MR1421822
  8. [8] Bianchini R.M, Stefani G, Graded approximations and controllability along a trajectory, SIAM J. Control Optim.28 (1990) 903-924. Zbl0712.93005MR1051629
  9. [9] Bonnard B., Chyba M., Méthodes géométriques et analytique pour étudier l'application exponentiele, la sphère et le front d'onde en géometrie SR dans le cas Martinet, J. ESAIM: Control, Optimisation and Calculus of Variations, submitted. Zbl0929.53016
  10. [10] Bonnard B., Launay G., Trélat E., The transcendence we need to compute the sphere and the wave front in Martinet SR-geometry, in: Proc. Int. Confer. Dedicated to Pontryagin, Moscow, September 1998, to appear. Zbl0988.35008MR1871126
  11. [11] Chow W.-L, Über Systeme von linearen partiellen Differentialgleichungen ester Ordnung, Math. Ann.117 (1939) 98-105. Zbl65.0398.01MR1880JFM65.0398.01
  12. [12] Filippov A.F, On certain questions in the theory of optimal control, Vestnik Moskov. Univ., Ser. Matem., Mekhan., Astron.2 (1959) 25-32. Zbl0090.06902
  13. [13] Gabrielov A, Projections of semi analytic sets, Funct. Anal. Appl.2 (1968) 282-291. Zbl0179.08503
  14. [14] Gauthier J.-P, Kupka I, Observability for systems with more outputs than inputs and asymptotic observers, Mathem. Zeitschrift223 (1996) 47-78. Zbl0863.93008MR1408862
  15. [15] Ge Zhong, Horizontal path space and Carnot–Caratheodory metric, Pacific J. Math.161 (1993) 255-286. Zbl0797.49033
  16. [16] Hironaka H, Subanalytic sets, in: Numbers Theory, Algebraic Geometry, and Commutative Algebra (in honor of V. Akizuki), Tokyo, 1973, pp. 453-493. Zbl0297.32008MR377101
  17. [17] Jacquet S, Subanalyticity of the sub-Riemannian distance, J. Dynamical and Control Systems5 (1999). Zbl0963.53014MR1706801
  18. [18] Rashevsky P.K, About connecting two points of a completely nonholonomic space by admissible curve, Uch. Zapiski Ped. Inst. Libknechta2 (1938) 83-94. 
  19. [19] Stefani G, On local controllability of a scalar-input system, in: Byrnes, Lindquist (Eds.), Theory and Appl. of Nonlinear Control Syst., North Holland, Amsterdam, 1986, pp. 167-179. Zbl0603.93006MR935375
  20. [20] Sussmann H.J, Optimal control and piecewise analyticity of the distance function, in: Ioffe A, Reich S (Eds.), Pitman Research Notes in Mathematics, Longman Publishers, 1992, pp. 298-310. Zbl0772.49019MR1184651
  21. [21] Sussmann H.J, Trajectory regularity and real analyticity, in: Proc. 25th CDC Conference, Athens, Greece, 1986, pp. 592-595. 
  22. [22] Sussmann H.J, A weak regularity theorem for real-analytic optimal control problems, Revista Mathematica Iberoamericana2 (3) (1986) 307-317. Zbl0638.49018MR908055
  23. [23] Tamm M, Subanalytic sets in the calculus of variations, Acta Mathematica46 (1981) 167-199. Zbl0478.58010MR611382

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.