Global subanalytic solutions of Hamilton–Jacobi type equations
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 3, page 363-387
- ISSN: 0294-1449
Access Full Article
topHow to cite
topTrélat, Emmanuel. "Global subanalytic solutions of Hamilton–Jacobi type equations." Annales de l'I.H.P. Analyse non linéaire 23.3 (2006): 363-387. <http://eudml.org/doc/78695>.
@article{Trélat2006,
author = {Trélat, Emmanuel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hamilton-Jacobi equation; value function; viscosity solution; subanalytical sets; Cauchy-Dirichlet problem; Dirichlet problem; analytic Lagrangian function},
language = {eng},
number = {3},
pages = {363-387},
publisher = {Elsevier},
title = {Global subanalytic solutions of Hamilton–Jacobi type equations},
url = {http://eudml.org/doc/78695},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Trélat, Emmanuel
TI - Global subanalytic solutions of Hamilton–Jacobi type equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 3
SP - 363
EP - 387
LA - eng
KW - Hamilton-Jacobi equation; value function; viscosity solution; subanalytical sets; Cauchy-Dirichlet problem; Dirichlet problem; analytic Lagrangian function
UR - http://eudml.org/doc/78695
ER -
References
top- [1] Agrachev A., Compactness for sub-Riemannian length minimizers and subanalyticity, Rend. Sem. Mat. Torino56 (1999). Zbl1039.53038MR1845741
- [2] Agrachev A., Bonnard B., Chyba M., Kupka I., Sub-Riemannian sphere in the Martinet flat case, ESAIM Control Optim. Calc. Var.2 (1997) 377-448. Zbl0902.53033MR1483765
- [3] Agrachev A., Gauthier J.P., On subanalyticity of Carnot–Carathéodory distances, Ann. Inst. H. Poincaré Anal. Non Linéaire18 (2001) 3. Zbl1001.93014MR1831660
- [4] Agrachev A., Sarychev A., Sub-Riemannian metrics: minimality of singular geodesics versus subanalyticity, ESAIM Control Optim. Calc. Var.4 (1999) 377-403. Zbl0978.53065MR1693912
- [5] Albano P., Cannarsa P., Structural properties of singularities of semiconcave functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)28 (4) (1999) 719-740. Zbl0957.26002MR1760538
- [6] Alberti G., Ambrosio L., Cannarsa P., On the singularities of convex functions, Manuscripta Math.76 (3–4) (1992) 421-435. Zbl0784.49011MR1185029
- [7] F. Alouges, S. Labbé. Z-invariant micromagnetic configurations, Preprint Univ. Paris Sud, Orsay, 2005.
- [8] Ambrosio L., Cannarsa P., Soner H.M., On the propagation of singularities of semi-convex functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)20 (4) (1993) 597-616. Zbl0874.49041MR1267601
- [9] Bardi M., Capuzzo-Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser, Boston, 1997. Zbl0890.49011MR1484411
- [10] Barles G., Solutions de viscosité des équations de Hamilton–Jacobi, Math. Appl., vol. 17, Springer-Verlag, 1994. Zbl0819.35002MR1613876
- [11] Bellaïche A., Tangent space in sub-Riemannian geometry, in: Sub-Riemannian Geometry, Birkhäuser, 1996. Zbl0862.53031MR1421822
- [12] Bonnard B., Chyba M., Singular trajectories and their role in control theory, Math. Appl.40 (2003). Zbl1022.93003MR1996448
- [13] Bonnard B., Trélat E., On the role of singular minimizers in sub-Riemannian geometry, Ann. Fac. Sci. Toulouse (6)X (3) (2001) 405-491. Zbl1017.53034MR1923686
- [14] Cannarsa P., Mennucci A., Sinestrari C., Regularity results for solutions of a class of Hamilton–Jacobi equations, Arch. Rational Mech. Anal.40 (1997) 197-223. Zbl0901.70013MR1486892
- [15] Cannarsa P., Sinestrari C., Convexity properties of the minimum time function, Calc. Var. Partial Differential Equations3 (1995) 273-298. Zbl0836.49013MR1385289
- [16] Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Progr. Nonlinear Differential Equations Appl., vol. 58, Birkhäuser, Boston, 2004. Zbl1095.49003MR2041617
- [17] Cannarsa P., Soner H.M., On the singularities of the viscosity solutions to Hamilton–Jacobi–Bellman equations, Indiana Univ. Math. J.36 (3) (1987) 501-524. Zbl0612.70016MR905608
- [18] Chitour Y., Jean F., Trélat E., Propriétés génériques des trajectoires singulières, C. R. Acad. Sci. Paris, Ser. I337 (1) (2003) 49-52. Zbl1038.58019MR1986538
- [19] Y. Chitour, F. Jean, E. Trélat. Genericity properties for singular trajectories, J. Differential Geom. (2005), in press. Zbl1102.53019
- [20] Crandall M.G., Lions P.-L., Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc.277 (1983) 1-42. Zbl0599.35024MR690039
- [21] Evans L.C., Partial Differential Equations, Amer. Math. Soc., 1998. Zbl0902.35002
- [22] Fathi A., Weak KAM Theorem and Lagrangian Dynamics, Cambridge University Press, 2003.
- [23] Hardt R.M., Stratification of real analytic mappings and images, Invent. Math.28 (1975). Zbl0298.32003MR372237
- [24] Hironaka H., Subanalytic sets, in: Number Theory, Algebraic Geometry and Commutative Algebra. In honor of Y. Akizuki, Tokyo, 1973. Zbl0297.32008MR377101
- [25] Ishii H., On representation of solutions of Hamilton–Jacobi equations with convex Hamiltonians, in: Lecture Notes Numer. Appl. Anal., vol. 8, 1985, pp. 15-22. MR882926
- [26] Jurdjevic V., Geometric Control Theory, Cambridge University Press, 1997. Zbl0940.93005MR1425878
- [27] Lions P.-L., Generalized Solutions of Hamilton–Jacobi Equations, Pitman, 1982. Zbl0497.35001MR667669
- [28] Pontryagin L.S., Boltyanskij V.G., Gamkrelidze R.V., Mishchenko E.F., The Mathematical Theory of Optimal Processes, Interscience Publishers, John Wiley & Sons, New York, 1962. Zbl0102.32001MR166037
- [29] F. Rampazzo, Faithful representations for convex Hamilton–Jacobi equations, Preprint, Univ. di Padova. Zbl1130.49003MR2178049
- [30] Rifford L., Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim.41 (3) (2002) 659-681. Zbl1034.93053MR1939865
- [31] Rifford L., Singularities of viscosity solutions and the stabilization problem in the plane, Indiana Univ. Math. J.52 (5) (2003) 1373-1396. Zbl1119.93058MR2010731
- [32] Tamm M., Subanalytic sets in the calculus of variations, Acta Math.146 (1981). Zbl0478.58010MR611382
- [33] Trélat E., Some properties of the value function and its level sets for affine control systems with quadratic cost, J. Dynam. Control Systems6 (4) (2000) 511-541. Zbl0964.49021MR1778212
- [34] E. Trélat, Etude asymptotique et transcendance de la fonction valeur en contrôle optimal; catégorie log-exp en géométrie sous-Riemannienne dans le cas Martinet, Thèse, Univ. de Bourgogne, 2000.
- [35] Trélat E., Solutions sous-analytiques globales de certaines équations d'Hamilton–Jacobi, C. R. Acad. Sci. Paris, Ser. I337 (10) (2003) 653-656. Zbl1032.35056MR2030106
- [36] van den Dries L., Miller C., Geometric categories and o-minimal structures, Duke Math. J.84 (2) (1996). Zbl0889.03025MR1404337
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.