Global subanalytic solutions of Hamilton–Jacobi type equations

Emmanuel Trélat

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 3, page 363-387
  • ISSN: 0294-1449

How to cite

top

Trélat, Emmanuel. "Global subanalytic solutions of Hamilton–Jacobi type equations." Annales de l'I.H.P. Analyse non linéaire 23.3 (2006): 363-387. <http://eudml.org/doc/78695>.

@article{Trélat2006,
author = {Trélat, Emmanuel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hamilton-Jacobi equation; value function; viscosity solution; subanalytical sets; Cauchy-Dirichlet problem; Dirichlet problem; analytic Lagrangian function},
language = {eng},
number = {3},
pages = {363-387},
publisher = {Elsevier},
title = {Global subanalytic solutions of Hamilton–Jacobi type equations},
url = {http://eudml.org/doc/78695},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Trélat, Emmanuel
TI - Global subanalytic solutions of Hamilton–Jacobi type equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 3
SP - 363
EP - 387
LA - eng
KW - Hamilton-Jacobi equation; value function; viscosity solution; subanalytical sets; Cauchy-Dirichlet problem; Dirichlet problem; analytic Lagrangian function
UR - http://eudml.org/doc/78695
ER -

References

top
  1. [1] Agrachev A., Compactness for sub-Riemannian length minimizers and subanalyticity, Rend. Sem. Mat. Torino56 (1999). Zbl1039.53038MR1845741
  2. [2] Agrachev A., Bonnard B., Chyba M., Kupka I., Sub-Riemannian sphere in the Martinet flat case, ESAIM Control Optim. Calc. Var.2 (1997) 377-448. Zbl0902.53033MR1483765
  3. [3] Agrachev A., Gauthier J.P., On subanalyticity of Carnot–Carathéodory distances, Ann. Inst. H. Poincaré Anal. Non Linéaire18 (2001) 3. Zbl1001.93014MR1831660
  4. [4] Agrachev A., Sarychev A., Sub-Riemannian metrics: minimality of singular geodesics versus subanalyticity, ESAIM Control Optim. Calc. Var.4 (1999) 377-403. Zbl0978.53065MR1693912
  5. [5] Albano P., Cannarsa P., Structural properties of singularities of semiconcave functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)28 (4) (1999) 719-740. Zbl0957.26002MR1760538
  6. [6] Alberti G., Ambrosio L., Cannarsa P., On the singularities of convex functions, Manuscripta Math.76 (3–4) (1992) 421-435. Zbl0784.49011MR1185029
  7. [7] F. Alouges, S. Labbé. Z-invariant micromagnetic configurations, Preprint Univ. Paris Sud, Orsay, 2005. 
  8. [8] Ambrosio L., Cannarsa P., Soner H.M., On the propagation of singularities of semi-convex functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)20 (4) (1993) 597-616. Zbl0874.49041MR1267601
  9. [9] Bardi M., Capuzzo-Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser, Boston, 1997. Zbl0890.49011MR1484411
  10. [10] Barles G., Solutions de viscosité des équations de Hamilton–Jacobi, Math. Appl., vol. 17, Springer-Verlag, 1994. Zbl0819.35002MR1613876
  11. [11] Bellaïche A., Tangent space in sub-Riemannian geometry, in: Sub-Riemannian Geometry, Birkhäuser, 1996. Zbl0862.53031MR1421822
  12. [12] Bonnard B., Chyba M., Singular trajectories and their role in control theory, Math. Appl.40 (2003). Zbl1022.93003MR1996448
  13. [13] Bonnard B., Trélat E., On the role of singular minimizers in sub-Riemannian geometry, Ann. Fac. Sci. Toulouse (6)X (3) (2001) 405-491. Zbl1017.53034MR1923686
  14. [14] Cannarsa P., Mennucci A., Sinestrari C., Regularity results for solutions of a class of Hamilton–Jacobi equations, Arch. Rational Mech. Anal.40 (1997) 197-223. Zbl0901.70013MR1486892
  15. [15] Cannarsa P., Sinestrari C., Convexity properties of the minimum time function, Calc. Var. Partial Differential Equations3 (1995) 273-298. Zbl0836.49013MR1385289
  16. [16] Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Progr. Nonlinear Differential Equations Appl., vol. 58, Birkhäuser, Boston, 2004. Zbl1095.49003MR2041617
  17. [17] Cannarsa P., Soner H.M., On the singularities of the viscosity solutions to Hamilton–Jacobi–Bellman equations, Indiana Univ. Math. J.36 (3) (1987) 501-524. Zbl0612.70016MR905608
  18. [18] Chitour Y., Jean F., Trélat E., Propriétés génériques des trajectoires singulières, C. R. Acad. Sci. Paris, Ser. I337 (1) (2003) 49-52. Zbl1038.58019MR1986538
  19. [19] Y. Chitour, F. Jean, E. Trélat. Genericity properties for singular trajectories, J. Differential Geom. (2005), in press. Zbl1102.53019
  20. [20] Crandall M.G., Lions P.-L., Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc.277 (1983) 1-42. Zbl0599.35024MR690039
  21. [21] Evans L.C., Partial Differential Equations, Amer. Math. Soc., 1998. Zbl0902.35002
  22. [22] Fathi A., Weak KAM Theorem and Lagrangian Dynamics, Cambridge University Press, 2003. 
  23. [23] Hardt R.M., Stratification of real analytic mappings and images, Invent. Math.28 (1975). Zbl0298.32003MR372237
  24. [24] Hironaka H., Subanalytic sets, in: Number Theory, Algebraic Geometry and Commutative Algebra. In honor of Y. Akizuki, Tokyo, 1973. Zbl0297.32008MR377101
  25. [25] Ishii H., On representation of solutions of Hamilton–Jacobi equations with convex Hamiltonians, in: Lecture Notes Numer. Appl. Anal., vol. 8, 1985, pp. 15-22. MR882926
  26. [26] Jurdjevic V., Geometric Control Theory, Cambridge University Press, 1997. Zbl0940.93005MR1425878
  27. [27] Lions P.-L., Generalized Solutions of Hamilton–Jacobi Equations, Pitman, 1982. Zbl0497.35001MR667669
  28. [28] Pontryagin L.S., Boltyanskij V.G., Gamkrelidze R.V., Mishchenko E.F., The Mathematical Theory of Optimal Processes, Interscience Publishers, John Wiley & Sons, New York, 1962. Zbl0102.32001MR166037
  29. [29] F. Rampazzo, Faithful representations for convex Hamilton–Jacobi equations, Preprint, Univ. di Padova. Zbl1130.49003MR2178049
  30. [30] Rifford L., Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim.41 (3) (2002) 659-681. Zbl1034.93053MR1939865
  31. [31] Rifford L., Singularities of viscosity solutions and the stabilization problem in the plane, Indiana Univ. Math. J.52 (5) (2003) 1373-1396. Zbl1119.93058MR2010731
  32. [32] Tamm M., Subanalytic sets in the calculus of variations, Acta Math.146 (1981). Zbl0478.58010MR611382
  33. [33] Trélat E., Some properties of the value function and its level sets for affine control systems with quadratic cost, J. Dynam. Control Systems6 (4) (2000) 511-541. Zbl0964.49021MR1778212
  34. [34] E. Trélat, Etude asymptotique et transcendance de la fonction valeur en contrôle optimal; catégorie log-exp en géométrie sous-Riemannienne dans le cas Martinet, Thèse, Univ. de Bourgogne, 2000. 
  35. [35] Trélat E., Solutions sous-analytiques globales de certaines équations d'Hamilton–Jacobi, C. R. Acad. Sci. Paris, Ser. I337 (10) (2003) 653-656. Zbl1032.35056MR2030106
  36. [36] van den Dries L., Miller C., Geometric categories and o-minimal structures, Duke Math. J.84 (2) (1996). Zbl0889.03025MR1404337

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.