Regularity properties of free discontinuity sets

Francesco Maddalena; Sergio Solimini

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 6, page 675-685
  • ISSN: 0294-1449

How to cite

top

Maddalena, Francesco, and Solimini, Sergio. "Regularity properties of free discontinuity sets." Annales de l'I.H.P. Analyse non linéaire 18.6 (2001): 675-685. <http://eudml.org/doc/78534>.

@article{Maddalena2001,
author = {Maddalena, Francesco, Solimini, Sergio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {minimization; regularity; Mumford-Shah functional},
language = {eng},
number = {6},
pages = {675-685},
publisher = {Elsevier},
title = {Regularity properties of free discontinuity sets},
url = {http://eudml.org/doc/78534},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Maddalena, Francesco
AU - Solimini, Sergio
TI - Regularity properties of free discontinuity sets
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 6
SP - 675
EP - 685
LA - eng
KW - minimization; regularity; Mumford-Shah functional
UR - http://eudml.org/doc/78534
ER -

References

top
  1. [1] Ambrosio L., Compactness theorem for a special class of functions of bounded variation, Boll. Un. Mat. Ital.3-B (1989) 857-881. Zbl0767.49001MR1032614
  2. [2] Ambrosio L., Existence theory for a new class of variational problems, Arch. Rat. Mech. Anal.111 (1990) 291-322. Zbl0711.49064MR1068374
  3. [3] Ambrosio L., A new proof of the SBV compactness theorem, Calc. Var.3 (1995) 127-137. Zbl0837.49011MR1384840
  4. [4] Ambrosio L., Fusco N., Pallara D., Partial Regularity of Free Discontinuity Sets, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)24 (1997) 39-62. Zbl0896.49024MR1475772
  5. [5] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford, 2000. Zbl0957.49001MR1857292
  6. [6] Dal Maso G., Morel J.M., Solimini S., Une approche variationelle en traitement d' images: résultats d' existence et d' approximation, C. Rend. Acad. Sc. Paris, Série I308 (1989) 549-554. Zbl0682.49003MR999453
  7. [7] Dal Maso G., Morel J.M., Solimini S., A variational method in image segmentation: existence and approximation results, Acta Mat.168 (1992) 89-151. Zbl0772.49006MR1149865
  8. [8] David G., C1 arcs for the minimizers of the Mumford–Shah functional, SIAM J. Appl. Math.56 (1996) 783-888. Zbl0870.49020
  9. [9] David G., Semmes S., On the singular set of minimizers of Mumford–Shah functional, J. Math. Pures Appl.803 (1989) 549-554. 
  10. [10] David G., Semmes S., Fractured Fractals and Broken Dreams, Clarendon Press, Oxford, 1997. Zbl0887.54001MR1616732
  11. [11] De Giorgi E., Ambrosio L., Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. s. 882 (1988) 199-210. Zbl0715.49014MR1152641
  12. [12] De Giorgi E., Carriero M., Leaci A., Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal.108 (1989) 195-218. Zbl0682.49002MR1012174
  13. [13] Maddalena F., Solimini S., Concentration and flatness properties of bisected balls, Ann. Scuola Norm. Sup. Pisa (to appear). 
  14. [14] Maddalena F., Solimini S., Lower semicontinuity properties for functionals with free discontinuities, Arch. Rat. Mech. Anal. (to appear). Zbl1013.49010MR1860049
  15. [15] Maddalena F., Solimini S., Blow-up techniques and regularity near the boundary for free discontinuity problems, in preparation. Zbl1044.49026
  16. [16] Morel J.M., Solimini S., Variational Methods in Image Segmentation, Birkhäuser, Boston, 1994. Zbl0827.68111MR1321598
  17. [17] Morrey C.B., Variational Multiple Integrals in the Calculus of Variations, Springer-Verlag, Heidelberg, New York, 1966. Zbl0142.38701MR202511
  18. [18] Mumford D., Shah S., Optimal approximation by piecewise smooth functions and associated variational problems, Comma. Pure Apple. Math.LXII-4 (1989). Zbl0691.49036
  19. [19] Rigot S., Big pieces of C1,α-graphs for minimizers of the the Mumford–Shah functional, Ann. Scoula Norm. Sup. Pisa Cl. Sci.4 (2000) 329-349. Zbl0960.49024
  20. [20] Solimini S., Simplified excision techniques for Free Discontinuity Problems in several variables, J. Funct. Anal.151 (1) (1997) 1-34. Zbl0891.49007MR1487768

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.