Concentration and flatness properties of the singular set of bisected balls

Francesco Maddalena; Sergio Solimini

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)

  • Volume: 30, Issue: 3-4, page 623-659
  • ISSN: 0391-173X

How to cite

top

Maddalena, Francesco, and Solimini, Sergio. "Concentration and flatness properties of the singular set of bisected balls." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.3-4 (2001): 623-659. <http://eudml.org/doc/84455>.

@article{Maddalena2001,
author = {Maddalena, Francesco, Solimini, Sergio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3-4},
pages = {623-659},
publisher = {Scuola normale superiore},
title = {Concentration and flatness properties of the singular set of bisected balls},
url = {http://eudml.org/doc/84455},
volume = {30},
year = {2001},
}

TY - JOUR
AU - Maddalena, Francesco
AU - Solimini, Sergio
TI - Concentration and flatness properties of the singular set of bisected balls
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 3-4
SP - 623
EP - 659
LA - eng
UR - http://eudml.org/doc/84455
ER -

References

top
  1. [1] R.A. Adams, "Sobolev Spaces", Academic Press, New York, 1975. Zbl0314.46030MR450957
  2. [2] L. Ambrosio, Compactness theorem for a special class of functions of bounded variation, Boll. Un. Mat. Ital. 3-B (1989), 857-881. Zbl0767.49001MR1032614
  3. [3] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rational Mech. Anal.111 (1990), 291-322. Zbl0711.49064MR1068374
  4. [4] L. Ambrosio, A new proof of the SBV compactness theorem, Calc. Var. Partial Differential Equations3 (1995), 127-137. Zbl0837.49011MR1384840
  5. [5] L. Ambrosio - N. Fusco - D. Pallara, Partial Regularity of Free Discontinuity Sets, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 39-62. Zbl0896.49024MR1475772
  6. [6] L. Ambrosio - N. Fusco - D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems", Clarendon Press, Oxford, 2000. Zbl0957.49001MR1857292
  7. [7] Yu. D. Burago - V.A. Zalgaller, "Geometric Inequalities", Springer-Verlag, Berlin, 1988. Zbl0633.53002MR936419
  8. [8] G. Dal Maso - J.M. Morel - S. Solimini, Une approche variationelle en traitement d'images: résultats d'existence et d'approximation, C. Rend. Acad. Sc. Paris, Série 1, 308 (1989), 549-554. Zbl0682.49003MR999453
  9. [9] G. Dal Maso - J.M. Morel - S. Solimini, A variational method in image segmentation: existence and approximation results, Acta Math.168 (1992), 89-15 1. Zbl0772.49006MR1149865
  10. [10] G. David - S. Semmes, On the singular set of minimizers of Mumford-Shah functional, J. Math. Pures Appl.(9) 803 (1989), 549-554. 
  11. [11] G. David - S. Semmes, Uniform rectifiability and singular set, Ann. Inst. H. Poincaré Anal. Non Linéaire13 n. 4 (1996), 383-443. Zbl0908.49030MR1404317
  12. [12] E. De Giorgi - L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Acad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei s. 882 (1988), 199-210. Zbl0715.49014MR1152641
  13. [13] E. De Giorgi - M. Carriero - A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal.108 (1989), 195-218. Zbl0682.49002MR1012174
  14. [14] L.C. Evans - R.F. Gariepy, "Measure Theory and Fine Properties of Functions", CRC Press, 1992. Zbl0804.28001MR1158660
  15. [15] E. Giusti, "Minimal Surfaces and Functions of Bounded Variation", Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
  16. [16] F. Maddalena - S. Solimini, Lower semicontinuity properties for functionals with free discontinuities, Arch. Rational Mech. Anal., to appear. Zbl1013.49010MR1860049
  17. [ 17] F. Maddalena - S. Solimini, Regularity properties offree discontinuity sets, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. Zbl1024.49013MR1860951
  18. [18] J.M. Morel - S. Solimini, "Variational Methods in Image Segmentation", Birkhäuser, Boston, 1994. Zbl0827.68111MR1321598
  19. [19] C.B. Morrey, " Variational Multiple Integrals in the Calculus of Variations", Springer Verlag, Heidelberg, New York1966. Zbl0142.38701MR202511
  20. [20] D. Mumford - S. Shah, Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problems, Comm. Pure Appl. Math.XLII-4 (1989). Zbl0691.49036MR997568
  21. [21] R. Rigot, Big pieces of C1,α-graphs for minimizers of the the Mumford-Shah functional, Ann. Scoula Norm. Sup. Pisa Cl. Sci (4) (2000), 329-349. Zbl0960.49024
  22. [22] S. Solimini, Simplified excision techniques for Free Discontinuity Problems in several variables, J. Funct. Anal.151 (1997), 1-34. Zbl0891.49007MR1487768

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.