Concentration and flatness properties of the singular set of bisected balls
Francesco Maddalena; Sergio Solimini
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)
- Volume: 30, Issue: 3-4, page 623-659
- ISSN: 0391-173X
Access Full Article
topHow to cite
topMaddalena, Francesco, and Solimini, Sergio. "Concentration and flatness properties of the singular set of bisected balls." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.3-4 (2001): 623-659. <http://eudml.org/doc/84455>.
@article{Maddalena2001,
author = {Maddalena, Francesco, Solimini, Sergio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3-4},
pages = {623-659},
publisher = {Scuola normale superiore},
title = {Concentration and flatness properties of the singular set of bisected balls},
url = {http://eudml.org/doc/84455},
volume = {30},
year = {2001},
}
TY - JOUR
AU - Maddalena, Francesco
AU - Solimini, Sergio
TI - Concentration and flatness properties of the singular set of bisected balls
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 3-4
SP - 623
EP - 659
LA - eng
UR - http://eudml.org/doc/84455
ER -
References
top- [1] R.A. Adams, "Sobolev Spaces", Academic Press, New York, 1975. Zbl0314.46030MR450957
- [2] L. Ambrosio, Compactness theorem for a special class of functions of bounded variation, Boll. Un. Mat. Ital. 3-B (1989), 857-881. Zbl0767.49001MR1032614
- [3] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rational Mech. Anal.111 (1990), 291-322. Zbl0711.49064MR1068374
- [4] L. Ambrosio, A new proof of the SBV compactness theorem, Calc. Var. Partial Differential Equations3 (1995), 127-137. Zbl0837.49011MR1384840
- [5] L. Ambrosio - N. Fusco - D. Pallara, Partial Regularity of Free Discontinuity Sets, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 39-62. Zbl0896.49024MR1475772
- [6] L. Ambrosio - N. Fusco - D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems", Clarendon Press, Oxford, 2000. Zbl0957.49001MR1857292
- [7] Yu. D. Burago - V.A. Zalgaller, "Geometric Inequalities", Springer-Verlag, Berlin, 1988. Zbl0633.53002MR936419
- [8] G. Dal Maso - J.M. Morel - S. Solimini, Une approche variationelle en traitement d'images: résultats d'existence et d'approximation, C. Rend. Acad. Sc. Paris, Série 1, 308 (1989), 549-554. Zbl0682.49003MR999453
- [9] G. Dal Maso - J.M. Morel - S. Solimini, A variational method in image segmentation: existence and approximation results, Acta Math.168 (1992), 89-15 1. Zbl0772.49006MR1149865
- [10] G. David - S. Semmes, On the singular set of minimizers of Mumford-Shah functional, J. Math. Pures Appl.(9) 803 (1989), 549-554.
- [11] G. David - S. Semmes, Uniform rectifiability and singular set, Ann. Inst. H. Poincaré Anal. Non Linéaire13 n. 4 (1996), 383-443. Zbl0908.49030MR1404317
- [12] E. De Giorgi - L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Acad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei s. 882 (1988), 199-210. Zbl0715.49014MR1152641
- [13] E. De Giorgi - M. Carriero - A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal.108 (1989), 195-218. Zbl0682.49002MR1012174
- [14] L.C. Evans - R.F. Gariepy, "Measure Theory and Fine Properties of Functions", CRC Press, 1992. Zbl0804.28001MR1158660
- [15] E. Giusti, "Minimal Surfaces and Functions of Bounded Variation", Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
- [16] F. Maddalena - S. Solimini, Lower semicontinuity properties for functionals with free discontinuities, Arch. Rational Mech. Anal., to appear. Zbl1013.49010MR1860049
- [ 17] F. Maddalena - S. Solimini, Regularity properties offree discontinuity sets, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. Zbl1024.49013MR1860951
- [18] J.M. Morel - S. Solimini, "Variational Methods in Image Segmentation", Birkhäuser, Boston, 1994. Zbl0827.68111MR1321598
- [19] C.B. Morrey, " Variational Multiple Integrals in the Calculus of Variations", Springer Verlag, Heidelberg, New York1966. Zbl0142.38701MR202511
- [20] D. Mumford - S. Shah, Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problems, Comm. Pure Appl. Math.XLII-4 (1989). Zbl0691.49036MR997568
- [21] R. Rigot, Big pieces of C1,α-graphs for minimizers of the the Mumford-Shah functional, Ann. Scoula Norm. Sup. Pisa Cl. Sci (4) (2000), 329-349. Zbl0960.49024
- [22] S. Solimini, Simplified excision techniques for Free Discontinuity Problems in several variables, J. Funct. Anal.151 (1997), 1-34. Zbl0891.49007MR1487768
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.