Big pieces of C 1 , α -graphs for minimizers of the Mumford-Shah functional

Séverine Rigot

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)

  • Volume: 29, Issue: 2, page 329-349
  • ISSN: 0391-173X

How to cite

top

Rigot, Séverine. "Big pieces of $C^{1, \alpha }$-graphs for minimizers of the Mumford-Shah functional." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.2 (2000): 329-349. <http://eudml.org/doc/84409>.

@article{Rigot2000,
author = {Rigot, Séverine},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {-regularity; Mumford-Shah functional; -constant; Hausdorff dimension; -hypersurface},
language = {eng},
number = {2},
pages = {329-349},
publisher = {Scuola normale superiore},
title = {Big pieces of $C^\{1, \alpha \}$-graphs for minimizers of the Mumford-Shah functional},
url = {http://eudml.org/doc/84409},
volume = {29},
year = {2000},
}

TY - JOUR
AU - Rigot, Séverine
TI - Big pieces of $C^{1, \alpha }$-graphs for minimizers of the Mumford-Shah functional
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 2
SP - 329
EP - 349
LA - eng
KW - -regularity; Mumford-Shah functional; -constant; Hausdorff dimension; -hypersurface
UR - http://eudml.org/doc/84409
ER -

References

top
  1. [1] ' R. Adams, "Sobolev Spaces", Academic Press, New York-London, 1975. Zbl0314.46030MR450957
  2. [2] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rational Mech. Anal.111 (1990), 291-322. Zbl0711.49064MR1068374
  3. [3] L. Ambrosio - N. Fusco - D. Pallara, Partial regularity of free discontinuity sets II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 39-62. Zbl0896.49024MR1475772
  4. [4] M. Carriero - A. Leaci, Existence theorem for a Dirichlet problem with free discontinuity set, Nonlinear Anal.15 (1990), 661-677. Zbl0713.49003MR1073957
  5. [5] G. Dal Maso — J.-M. Morel — S. Solimini, A variational method in image segmentation: existence and approximation results, Acta Math.168 (1992), 89-151. Zbl0772.49006MR1149865
  6. [6] G. David, "Wavelets and singular integrals on curves and surfaces", Lecture Notes in Math, Vol. 1465, Springer-Verlag, Berlin, 1991. Zbl0764.42019MR1123480
  7. [7] G. David, C1-arcs for minimizers of the Mumford-Shah functional,, SIAM J. Appl. Math56 (1996), 783-888. Zbl0870.49020MR1389754
  8. [8] G. David - S. Semmes, "Analysis of and on uniformly rectifiable sets", Math. Surveys Monogr., Vol. 38, Amer. Math. Soc., Providence, 1993. Zbl0832.42008MR1251061
  9. [9] G. David - S. Semmes, On the singular sets of minimizers of the Mumford-Shahfunctional, J. Math. Pures Appl. (4) 75 (1996), 299-342. Zbl0853.49010MR1411155
  10. [10] G. David - S. Semmes, Uniform rectifiability and singular sets, Ann. Inst. H. Poincaré Anal. Non Linéaire13 (1996), 383-443. Zbl0908.49030MR1404317
  11. [11] E. De Giorgi - M. Carriero - A. Leaci, Existence theorem fora minimum problem with free discontinuity set, Arch. Rational Mech. Anal.108 (1989), 195-218. Zbl0682.49002MR1012174
  12. [12] F. Maddalena - S. Solimini, Regularity properties of free discontinuity sets, preprint. Zbl1024.49013
  13. [13] D. Mumford - J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math.42 (1989), 577-685. Zbl0691.49036MR997568

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.