On the thermodynamic limit for Hartree–Fock type models
I Catto; C Le Bris; P.-L Lions
Annales de l'I.H.P. Analyse non linéaire (2001)
- Volume: 18, Issue: 6, page 687-760
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCatto, I, Le Bris, C, and Lions, P.-L. "On the thermodynamic limit for Hartree–Fock type models." Annales de l'I.H.P. Analyse non linéaire 18.6 (2001): 687-760. <http://eudml.org/doc/78535>.
@article{Catto2001,
author = {Catto, I, Le Bris, C, Lions, P.-L},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quantum chemistry; reduced Hartree-Fock models; existence of the thermodynamic limit; well posed},
language = {eng},
number = {6},
pages = {687-760},
publisher = {Elsevier},
title = {On the thermodynamic limit for Hartree–Fock type models},
url = {http://eudml.org/doc/78535},
volume = {18},
year = {2001},
}
TY - JOUR
AU - Catto, I
AU - Le Bris, C
AU - Lions, P.-L
TI - On the thermodynamic limit for Hartree–Fock type models
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 6
SP - 687
EP - 760
LA - eng
KW - quantum chemistry; reduced Hartree-Fock models; existence of the thermodynamic limit; well posed
UR - http://eudml.org/doc/78535
ER -
References
top- [1] Amerio L, Prouse G, Almost Periodic Functions and Functional Equations, Van Nostrand Reinhold Company, 1971. Zbl0215.15701MR275061
- [2] Ashcroft N.W, Mermin N.D, Solid-state Physics, Saunders College Publishing, 1976.
- [3] Axel F, Gratias D (Eds.), Beyond Quasicrystals, Centre de Physique Les Houches, Les Editions de Physique, Springer, 1995. Zbl0880.00009MR1420414
- [4] Bach V, Lieb E.H, Solovej J.P, Generalized Hartree–Fock theory and the Hubbard model, J. Stat. Phys.76 (1994) 3-90. Zbl0839.60095
- [5] Bach V, Error bound for the Hartree–Fock energy of atoms and molecules, Comm. Math. Phys.147 (1992) 527-548. Zbl0771.46038
- [6] Balian R, From Microphysics to Macrophysics; Methods and Applications of Statistical Physics, I, II, Springer-Verlag, 1991. Zbl1188.82001MR1129462
- [7] Bloch F, Über die Quantenmechanik der Electronen in Kristallgittern, Z. Phys.52 (1928) 555-560. Zbl54.0990.01JFM54.0990.01
- [8] Bohr H, Almost Periodic Functions, Chelsea, 1947. MR20163
- [9] Callaway J, Quantum Theory of the Solid State, Academic Press, 1974.
- [10] Catto I, Le Bris C, Lions P.-L, Limite thermodynamique pour des modèles de type Thomas–Fermi [Thermodynamic limit for Thomas–Fermi type models], C. R. Acad. Sci. Paris Sér. I Math.322 (1996) 357-364. Zbl0849.35114
- [11] Catto I, Le Bris C, Lions P.-L, Mathematical Theory of Thermodynamic Limits: Thomas–Fermi Type Models, Oxford University Press, 1998. Zbl0938.81001
- [12] Catto I, Le Bris C, Lions P.-L, Sur la limite thermodynamique pour des modèles de type Hartree et Hartree–Fock [On the thermodynamic limit for Hartree and Hartree–Fock type models], C. R. Acad. Sci. Paris Sér. I Math.327 (1998) 259-266. Zbl0919.35142
- [13] Catto I., Le Bris C., Lions P.-L., On some periodic Hartree-type models for crystals, submitted. Also available at: http://www.math.utexas.edu/mp_arc/c/99/99-392.ps.gz. Zbl1005.81101
- [14] Chen L, Moody R.V, Patera J, Non-crystallographic root systems, in: Quasicrystals and Discrete Geometry (Toronto, ON, 1995), Fields Institute Monogr., 10, American mathematical society, Providence, RI, 1998, pp. 135-178. Zbl0916.20026MR1636777
- [15] Conca C, Vanninathan M, Homogenization of periodic structures via Bloch decomposition, SIAM J. Appl. Math.57 (6) (1997) 1639-1659. Zbl0990.35019MR1484944
- [16] Conca C, Planchard J, Vanninathan M, Fluids and Periodic Structures, Collection RAM, 38, Wiley/Masson, Paris, 1995. Zbl0910.76002MR1652238
- [17] Eastham M.S.P, The Spectral Theory of Periodic Differential Equations, Scottish Acad. Press, Edinburgh-London, 1973. Zbl0287.34016
- [18] Figotin A, Kuchment P, Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model, SIAM J. Appl. Math.56 (1) (1996) 68-88. Zbl0852.35014MR1372891
- [19] Figotin A, Kuchment P, Band-gap structure of spectra of periodic dielectric and acoustic media. II. Two-dimensional photonic crystals, SIAM J. Appl. Math.56 (6) (1996) 1561-1620. Zbl0868.35009MR1417473
- [20] Floquet G, Sur les équations différentielles linéaires à coefficients périodiques, Ann. Ecole Norm. Sér. 212 (1883) 47-89. MR1508722JFM15.0279.01
- [21] Friesecke G, Pair correlations and exchange phenomena in the free electron gas, Comm. Math. Phys.184 (1997) 143-171. Zbl0874.60094MR1462503
- [22] Karpeshina Y.E, Perturbation theory for the Schrödinger operator with a periodic potential, Lecture Notes in Mathematics, 1663, Springer-Verlag, 1997. Zbl0883.35002MR1472485
- [23] Kittel C, Introduction to Solid State Physics, Wiley, 1986. Zbl0052.45506
- [24] Kuchment P, Floquet Theory for Partial Differential Equations, Operator Theory Advances and Applications, 60, Birkhäuser, Basel, 1993. Zbl0789.35002MR1232660
- [25] Lebowitz J.L, Lieb E.H, Existence of thermodynamics for real matter with Coulomb forces, Phys. Rev. Lett.22 (13) (1969) 631-634.
- [26] Lieb E.H, Lebowitz J.L, The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei, Adv. in Maths.9 (1972) 316-398. Zbl1049.82501MR339751
- [27] Lieb E.H, Lebowitz J.L, Lectures on the thermodynamic limit for Coulomb systems, in: Springer Lecture Notes in Physics, 20, Springer, 1973, pp. 136-161.
- [28] Lieb E.H, The stability of matter: from atoms to stars, Bull. Amer. Math. Soc.22 (1) (1990) 1-49. Zbl0698.35135MR1014510
- [29] Lieb E.H, Thomas–Fermi and related theories of atoms and molecules, Rev. Modern Phys.53 (4) (1981) 603-641, Errata: Rev. Modern Phys. 54 (1982) 311. Zbl1049.81679
- [30] Lieb E.H, A Variational principle for many-fermion systems, Phys. Rev. Lett.46 (1981) 457-459, Errata: Rev. Modern Phys. 47 (1981) 69. MR601336
- [31] Lieb E.H, Oxford S, An improved lower bound on the indirect Coulomb energy, Int. J. Quantum Chem.19 (1981) 427-439.
- [32] Lieb E.H, Simon B, The Thomas–Fermi theory of atoms, molecules and solids, Adv. Math.23 (1977) 22-116. Zbl0938.81568
- [33] Lieb E.H, Simon B, The Hartree–Fock theory for Coulomb systems, Comm. Math. Phys.53 (1977) 185-194.
- [34] Lieb E.H, Solovej J.P, Yngvason J, Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band regions, Comm. Pure. Appl. Math.47 (4) (1994) 513-591. Zbl0800.49041MR1272387
- [35] Lieb E.H, Thirring W, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, in: Lieb E.H, Simon B, Wightman A (Eds.), Studies in Mathematical Physics, Princeton University Press, 1976, pp. 269-303. Zbl0342.35044
- [36] Lieb E.H, Thirring W, Bounds for the kinetic energy of fermions which prove the stability of matter, Phys. Rev. Lett.35 (1975) 687-689, Errata: Phys. Rev. Lett. 35 (1975) 1116.
- [37] Lions P.-L, Solutions of Hartree–Fock equations for Coulomb systems, Comm. Math. Phys.109 (1987) 33-97. Zbl0618.35111
- [38] Lions P.-L, Hartree–Fock and related equations, in: Nonlinear Partial Differential Equations and their Applications, Lect. Collège de France Seminar, Vol. IX, Paris, 1985–86, Pitman Res. Notes Math. Ser., 181, 1988, pp. 304-333. Zbl0693.35047
- [39] Lions P.-L, Paul T, Sur les mesures de Wigner, Rev. Mat. Iberoamericana9 (3) (1993) 553-618. Zbl0801.35117MR1251718
- [40] Madelung O, Introduction to Solid State theory, Solid State Sciences, 2, Springer-Verlag, Berlin, 1981. MR534325
- [41] Parr R.G, Yang W, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989.
- [42] Pisani C, Quantum Mechanical Ab Initio Calculation of the Properties of Crystalline Materials, Lecture Notes in Chemistry, 67, Springer-Verlag, 1996.
- [43] Quinn Ch.M, An introduction to the Quantum Theory of Solids, Clarendon Press, Oxford, 1973.
- [44] Reed M, Simon B, Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, New-York-London, 1972. Zbl0242.46001MR493419
- [45] Reed M, Simon B, Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New-York, 1978. Zbl0401.47001MR493421
- [46] Ruelle D, Statistical Mechanics: Rigorous Results, Benjamin, New-York, 1969, Advanced Books Classics, Addison-Wesley, 1989. Zbl0177.57301MR289084
- [47] Senechal M, Quasicrystals and Geometry, Cambridge University Press, 1995. Zbl0828.52007MR1340198
- [48] Slater J.C, Quantum Theory of Molecules and Solids, Mac Graw Hill, 1963. Zbl0115.23803
- [49] Slater J.C, Symmetry and Energy Bands in Crystals, Dover, 1972.
- [50] Solovej J.P, Universality in the Thomas–Fermi–von Weizsäcker model of atoms and molecules, Comm. Math. Phys.129 (1990) 561-598. Zbl0708.35071
- [51] Solovej J.P, An improvement on stability of matter in mean field theory, in: Differential Equations and Mathematical Physics, Proceedings of the International Conference, Univ. of Alabama, Birmingham, March 1994, International Press, 1995. Zbl0929.35131MR1721316
- [52] Solovej J.P, Proof of the ionization conjecture in a reduced Hartree–Fock model, Invent. Math.104 (1991) 291-311. Zbl0732.35066
- [53] Stein E, Singular Integrals Operators and Differentiability of Functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR290095
- [54] Temam R, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, 1988. Zbl0662.35001MR953967
- [55] Tolman R.C, The Principles of Statistical Mechanics, Oxford University Press, 1962. Zbl1203.82001JFM64.0886.07
- [56] Wilcox C, Theory of Bloch waves, J. Anal. Math.33 (1978) 146-167. Zbl0408.35067MR516045
- [57] Ziman J, Principles of the Theory of Solids, Cambridge University Press, 1972. Zbl0121.44801MR345569
Citations in EuDML Documents
top- Mathieu Lewin, Nicolas Rougerie, On the binding of polarons in a mean-field quantum crystal
- I. Catto, C. Le Bris, P.-L. Lions, On some periodic Hartree-type models for crystals
- Arnaud Anantharaman, Eric Cancès, Existence of minimizers for Kohn-Sham models in quantum chemistry
- Nicolas Rougerie, Sur la modélisation de l’interaction entre polarons et cristaux quantiques
- Xavier Blanc, Claude Le Bris, Pierre-Louis Lions, Atomistic to Continuum limits for computational materials science
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.