On the thermodynamic limit for Hartree–Fock type models

I Catto; C Le Bris; P.-L Lions

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 6, page 687-760
  • ISSN: 0294-1449

How to cite

top

Catto, I, Le Bris, C, and Lions, P.-L. "On the thermodynamic limit for Hartree–Fock type models." Annales de l'I.H.P. Analyse non linéaire 18.6 (2001): 687-760. <http://eudml.org/doc/78535>.

@article{Catto2001,
author = {Catto, I, Le Bris, C, Lions, P.-L},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quantum chemistry; reduced Hartree-Fock models; existence of the thermodynamic limit; well posed},
language = {eng},
number = {6},
pages = {687-760},
publisher = {Elsevier},
title = {On the thermodynamic limit for Hartree–Fock type models},
url = {http://eudml.org/doc/78535},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Catto, I
AU - Le Bris, C
AU - Lions, P.-L
TI - On the thermodynamic limit for Hartree–Fock type models
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 6
SP - 687
EP - 760
LA - eng
KW - quantum chemistry; reduced Hartree-Fock models; existence of the thermodynamic limit; well posed
UR - http://eudml.org/doc/78535
ER -

References

top
  1. [1] Amerio L, Prouse G, Almost Periodic Functions and Functional Equations, Van Nostrand Reinhold Company, 1971. Zbl0215.15701MR275061
  2. [2] Ashcroft N.W, Mermin N.D, Solid-state Physics, Saunders College Publishing, 1976. 
  3. [3] Axel F, Gratias D (Eds.), Beyond Quasicrystals, Centre de Physique Les Houches, Les Editions de Physique, Springer, 1995. Zbl0880.00009MR1420414
  4. [4] Bach V, Lieb E.H, Solovej J.P, Generalized Hartree–Fock theory and the Hubbard model, J. Stat. Phys.76 (1994) 3-90. Zbl0839.60095
  5. [5] Bach V, Error bound for the Hartree–Fock energy of atoms and molecules, Comm. Math. Phys.147 (1992) 527-548. Zbl0771.46038
  6. [6] Balian R, From Microphysics to Macrophysics; Methods and Applications of Statistical Physics, I, II, Springer-Verlag, 1991. Zbl1188.82001MR1129462
  7. [7] Bloch F, Über die Quantenmechanik der Electronen in Kristallgittern, Z. Phys.52 (1928) 555-560. Zbl54.0990.01JFM54.0990.01
  8. [8] Bohr H, Almost Periodic Functions, Chelsea, 1947. MR20163
  9. [9] Callaway J, Quantum Theory of the Solid State, Academic Press, 1974. 
  10. [10] Catto I, Le Bris C, Lions P.-L, Limite thermodynamique pour des modèles de type Thomas–Fermi [Thermodynamic limit for Thomas–Fermi type models], C. R. Acad. Sci. Paris Sér. I Math.322 (1996) 357-364. Zbl0849.35114
  11. [11] Catto I, Le Bris C, Lions P.-L, Mathematical Theory of Thermodynamic Limits: Thomas–Fermi Type Models, Oxford University Press, 1998. Zbl0938.81001
  12. [12] Catto I, Le Bris C, Lions P.-L, Sur la limite thermodynamique pour des modèles de type Hartree et Hartree–Fock [On the thermodynamic limit for Hartree and Hartree–Fock type models], C. R. Acad. Sci. Paris Sér. I Math.327 (1998) 259-266. Zbl0919.35142
  13. [13] Catto I., Le Bris C., Lions P.-L., On some periodic Hartree-type models for crystals, submitted. Also available at: http://www.math.utexas.edu/mp_arc/c/99/99-392.ps.gz. Zbl1005.81101
  14. [14] Chen L, Moody R.V, Patera J, Non-crystallographic root systems, in: Quasicrystals and Discrete Geometry (Toronto, ON, 1995), Fields Institute Monogr., 10, American mathematical society, Providence, RI, 1998, pp. 135-178. Zbl0916.20026MR1636777
  15. [15] Conca C, Vanninathan M, Homogenization of periodic structures via Bloch decomposition, SIAM J. Appl. Math.57 (6) (1997) 1639-1659. Zbl0990.35019MR1484944
  16. [16] Conca C, Planchard J, Vanninathan M, Fluids and Periodic Structures, Collection RAM, 38, Wiley/Masson, Paris, 1995. Zbl0910.76002MR1652238
  17. [17] Eastham M.S.P, The Spectral Theory of Periodic Differential Equations, Scottish Acad. Press, Edinburgh-London, 1973. Zbl0287.34016
  18. [18] Figotin A, Kuchment P, Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model, SIAM J. Appl. Math.56 (1) (1996) 68-88. Zbl0852.35014MR1372891
  19. [19] Figotin A, Kuchment P, Band-gap structure of spectra of periodic dielectric and acoustic media. II. Two-dimensional photonic crystals, SIAM J. Appl. Math.56 (6) (1996) 1561-1620. Zbl0868.35009MR1417473
  20. [20] Floquet G, Sur les équations différentielles linéaires à coefficients périodiques, Ann. Ecole Norm. Sér. 212 (1883) 47-89. MR1508722JFM15.0279.01
  21. [21] Friesecke G, Pair correlations and exchange phenomena in the free electron gas, Comm. Math. Phys.184 (1997) 143-171. Zbl0874.60094MR1462503
  22. [22] Karpeshina Y.E, Perturbation theory for the Schrödinger operator with a periodic potential, Lecture Notes in Mathematics, 1663, Springer-Verlag, 1997. Zbl0883.35002MR1472485
  23. [23] Kittel C, Introduction to Solid State Physics, Wiley, 1986. Zbl0052.45506
  24. [24] Kuchment P, Floquet Theory for Partial Differential Equations, Operator Theory Advances and Applications, 60, Birkhäuser, Basel, 1993. Zbl0789.35002MR1232660
  25. [25] Lebowitz J.L, Lieb E.H, Existence of thermodynamics for real matter with Coulomb forces, Phys. Rev. Lett.22 (13) (1969) 631-634. 
  26. [26] Lieb E.H, Lebowitz J.L, The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei, Adv. in Maths.9 (1972) 316-398. Zbl1049.82501MR339751
  27. [27] Lieb E.H, Lebowitz J.L, Lectures on the thermodynamic limit for Coulomb systems, in: Springer Lecture Notes in Physics, 20, Springer, 1973, pp. 136-161. 
  28. [28] Lieb E.H, The stability of matter: from atoms to stars, Bull. Amer. Math. Soc.22 (1) (1990) 1-49. Zbl0698.35135MR1014510
  29. [29] Lieb E.H, Thomas–Fermi and related theories of atoms and molecules, Rev. Modern Phys.53 (4) (1981) 603-641, Errata: Rev. Modern Phys. 54 (1982) 311. Zbl1049.81679
  30. [30] Lieb E.H, A Variational principle for many-fermion systems, Phys. Rev. Lett.46 (1981) 457-459, Errata: Rev. Modern Phys. 47 (1981) 69. MR601336
  31. [31] Lieb E.H, Oxford S, An improved lower bound on the indirect Coulomb energy, Int. J. Quantum Chem.19 (1981) 427-439. 
  32. [32] Lieb E.H, Simon B, The Thomas–Fermi theory of atoms, molecules and solids, Adv. Math.23 (1977) 22-116. Zbl0938.81568
  33. [33] Lieb E.H, Simon B, The Hartree–Fock theory for Coulomb systems, Comm. Math. Phys.53 (1977) 185-194. 
  34. [34] Lieb E.H, Solovej J.P, Yngvason J, Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band regions, Comm. Pure. Appl. Math.47 (4) (1994) 513-591. Zbl0800.49041MR1272387
  35. [35] Lieb E.H, Thirring W, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, in: Lieb E.H, Simon B, Wightman A (Eds.), Studies in Mathematical Physics, Princeton University Press, 1976, pp. 269-303. Zbl0342.35044
  36. [36] Lieb E.H, Thirring W, Bounds for the kinetic energy of fermions which prove the stability of matter, Phys. Rev. Lett.35 (1975) 687-689, Errata: Phys. Rev. Lett. 35 (1975) 1116. 
  37. [37] Lions P.-L, Solutions of Hartree–Fock equations for Coulomb systems, Comm. Math. Phys.109 (1987) 33-97. Zbl0618.35111
  38. [38] Lions P.-L, Hartree–Fock and related equations, in: Nonlinear Partial Differential Equations and their Applications, Lect. Collège de France Seminar, Vol. IX, Paris, 1985–86, Pitman Res. Notes Math. Ser., 181, 1988, pp. 304-333. Zbl0693.35047
  39. [39] Lions P.-L, Paul T, Sur les mesures de Wigner, Rev. Mat. Iberoamericana9 (3) (1993) 553-618. Zbl0801.35117MR1251718
  40. [40] Madelung O, Introduction to Solid State theory, Solid State Sciences, 2, Springer-Verlag, Berlin, 1981. MR534325
  41. [41] Parr R.G, Yang W, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989. 
  42. [42] Pisani C, Quantum Mechanical Ab Initio Calculation of the Properties of Crystalline Materials, Lecture Notes in Chemistry, 67, Springer-Verlag, 1996. 
  43. [43] Quinn Ch.M, An introduction to the Quantum Theory of Solids, Clarendon Press, Oxford, 1973. 
  44. [44] Reed M, Simon B, Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, New-York-London, 1972. Zbl0242.46001MR493419
  45. [45] Reed M, Simon B, Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New-York, 1978. Zbl0401.47001MR493421
  46. [46] Ruelle D, Statistical Mechanics: Rigorous Results, Benjamin, New-York, 1969, Advanced Books Classics, Addison-Wesley, 1989. Zbl0177.57301MR289084
  47. [47] Senechal M, Quasicrystals and Geometry, Cambridge University Press, 1995. Zbl0828.52007MR1340198
  48. [48] Slater J.C, Quantum Theory of Molecules and Solids, Mac Graw Hill, 1963. Zbl0115.23803
  49. [49] Slater J.C, Symmetry and Energy Bands in Crystals, Dover, 1972. 
  50. [50] Solovej J.P, Universality in the Thomas–Fermi–von Weizsäcker model of atoms and molecules, Comm. Math. Phys.129 (1990) 561-598. Zbl0708.35071
  51. [51] Solovej J.P, An improvement on stability of matter in mean field theory, in: Differential Equations and Mathematical Physics, Proceedings of the International Conference, Univ. of Alabama, Birmingham, March 1994, International Press, 1995. Zbl0929.35131MR1721316
  52. [52] Solovej J.P, Proof of the ionization conjecture in a reduced Hartree–Fock model, Invent. Math.104 (1991) 291-311. Zbl0732.35066
  53. [53] Stein E, Singular Integrals Operators and Differentiability of Functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR290095
  54. [54] Temam R, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, 1988. Zbl0662.35001MR953967
  55. [55] Tolman R.C, The Principles of Statistical Mechanics, Oxford University Press, 1962. Zbl1203.82001JFM64.0886.07
  56. [56] Wilcox C, Theory of Bloch waves, J. Anal. Math.33 (1978) 146-167. Zbl0408.35067MR516045
  57. [57] Ziman J, Principles of the Theory of Solids, Cambridge University Press, 1972. Zbl0121.44801MR345569

Citations in EuDML Documents

top
  1. Mathieu Lewin, Nicolas Rougerie, On the binding of polarons in a mean-field quantum crystal
  2. I. Catto, C. Le Bris, P.-L. Lions, On some periodic Hartree-type models for crystals
  3. Arnaud Anantharaman, Eric Cancès, Existence of minimizers for Kohn-Sham models in quantum chemistry
  4. Nicolas Rougerie, Sur la modélisation de l’interaction entre polarons et cristaux quantiques
  5. Xavier Blanc, Claude Le Bris, Pierre-Louis Lions, Atomistic to Continuum limits for computational materials science

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.