Existence of minimizers for Kohn-Sham models in quantum chemistry

Arnaud Anantharaman; Eric Cancès

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2425-2455
  • ISSN: 0294-1449

How to cite


Anantharaman, Arnaud, and Cancès, Eric. "Existence of minimizers for Kohn-Sham models in quantum chemistry." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2425-2455. <http://eudml.org/doc/78941>.

author = {Anantharaman, Arnaud, Cancès, Eric},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {electronic structure; density functional theory; Kohn-Sham; variational methods; concentration-compactness},
language = {eng},
number = {6},
pages = {2425-2455},
publisher = {Elsevier},
title = {Existence of minimizers for Kohn-Sham models in quantum chemistry},
url = {http://eudml.org/doc/78941},
volume = {26},
year = {2009},

AU - Anantharaman, Arnaud
AU - Cancès, Eric
TI - Existence of minimizers for Kohn-Sham models in quantum chemistry
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2425
EP - 2455
LA - eng
KW - electronic structure; density functional theory; Kohn-Sham; variational methods; concentration-compactness
UR - http://eudml.org/doc/78941
ER -


  1. [1] A. Anantharaman, PhD thesis, Université Paris-Est, Ecole des Ponts, in preparation. 
  2. [2] Becke A.D., Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A38 (1988) 3098-3100. 
  3. [3] Blöchl P.E., Projector augmented-wave method, Phys. Rev. B50 (1994) 17953-17979. 
  4. [4] Catto I., Le Bris C., Lions P.-L., On the thermodynamic limit for Hartree–Fock type models, Ann. Inst. H. Poincaré Anal. Non Linéaire18 (6) (2001) 687-760. Zbl0994.35115MR1860952
  5. [5] Ceperley D.M., Alder B.J., Ground state of the electron gas by a stochastic method, Phys. Rev. Lett.45 (1980) 566-569. 
  6. [6] Davidson E.R., Reduced Density Matrices in Quantum Chemistry, Academic Press, New York, 1976. 
  7. [7] Dreizler R.M., Gross E.K.U., Density Functional Theory, Springer, 1990. Zbl0723.70002
  8. [8] Ekeland I., Nonconvex minimization problems, Bull. Amer. Math. Soc.1 (1979) 443-474. Zbl0441.49011MR526967
  9. [9] Frank R.L., Lieb E.H., Seiringer R., Siedentop H., Müller's exchange-correlation energy in density-matrix-functional theory, Phys. Rev. A76 (2007) 052517. 
  10. [10] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, 1983. Zbl0516.49003MR717034
  11. [11] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, third ed., Springer, 1998. Zbl1042.35002
  12. [12] Hohenberg P., Kohn W., Inhomogeneous electron gas, Phys. Rev. B136 (1964) 864-871. MR180312
  13. [13] Kohn W., Sham L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev. A140 (1965) 1133. MR189732
  14. [14] Langreth D.C., Perdew J.P., Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works, Phys. Rev. B21 (1980) 5469-5493. 
  15. [15] C. Le Bris, Quelques problèmes mathématiques en chimie quantique moléculaire, Thèse de l'Ecole Polytechnique, 1993. 
  16. [16] Levy M., Universal variational functionals of electron densities, first order density matrices, and natural spin-orbitals and solution of the V-representability problem, Proc. Natl. Acad. Sci. USA76 (1979) 6062-6065. MR554891
  17. [17] Lieb E.H., Density functional for Coulomb systems, Int. J. Quantum Chem.24 (1983) 243-277. 
  18. [18] Lieb E.H., Loss M., Analysis, Grad. Stud. Math., vol. 14, second ed., Amer. Math. Soc., Providence, RI, 2001. Zbl0966.26002MR1817225
  19. [19] Lions P.-L., Solutions of Hartree–Fock equations for Coulomb systems, Comm. Math. Phys.109 (1987) 33-97. Zbl0618.35111MR879032
  20. [20] Lions P.-L., The concentration-compactness method in the calculus of variations. The locally compact case. Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire1 (1984) 109-145, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire1 (1984) 223-283. Zbl0704.49004
  21. [21] L. Tartar, Homogénéisation et compacité par compensation, Cours Peccot au College de France, 1977. Zbl0544.47042
  22. [22] Perdew J.P., Burke K., Ernzerhof M., Generalized gradient approximation made simple, Phys. Rev. Lett.77 (1996) 3865-3868. 
  23. [23] Perdew J.P., Wang Y., Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B33 (1986) 8800-8802. 
  24. [24] Perdew J.P., Wang Y., Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B45 (1992) 13244-13249. 
  25. [25] Perdew J.P., Zunger A., Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B23 (1981) 5048-5079. 
  26. [26] Redner S., Citation statistics from 110 years of Physical Review, Phys. Today49 (2005) 49-54. 
  27. [27] Reed M., Simon B., Methods of Modern Mathematical Physics, vol. I, Functional Analysis, second ed., Academic Press, New York, 1980. Zbl0459.46001MR751959
  28. [28] Reed M., Simon B., Methods of Modern Mathematical Physics, vol. IV, Analysis of Operators, Academic Press, New York, 1978. Zbl0401.47001MR493421
  29. [29] Simon B., Trace Ideals and their Applications, London Math. Soc. Lecture Note Ser., vol. 35, Cambridge Univ. Press, 1979. Zbl0423.47001MR541149
  30. [30] Stampacchia G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier15 (1965) 189-257. Zbl0151.15401MR192177
  31. [31] Troullier N., Martins J.L., Efficient pseudopotentials for plane wave calculations, Phys. Rev. B43 (1991) 1993-2006. 
  32. [32] Vanderbilt D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B41 (1990) 7892-7895. 
  33. [33] Vosko S.H., Wilk L., Nusair M., Accurate spin-dependent electron liquid correlation energy for local spin density calculations: A critical analysis, Can. J. Phys.58 (1980) 1200-1211. 
  34. [34] Zhislin G.M., A study of the spectrum of the Schrödinger operator for a system of several particles, Tr. Mosk. Mat. Obs.9 (1960) 81-120. Zbl0121.10004MR126729
  35. [35] Zhislin G.M., Sigalov A.G., The spectrum of the energy operator for atoms with fixed nuclei on subspaces corresponding to irreducible representations of the group of permutations, Izv. Akad. Nauk SSSR Ser. Mat.29 (1965) 835-860. Zbl0138.39304MR194075

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.