Page 1 Next

Displaying 1 – 20 of 40

Showing per page

An error analysis of the multi-configuration time-dependent Hartree method of quantum dynamics

Dajana Conte, Christian Lubich (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper gives an error analysis of the multi-configuration time-dependent Hartree (MCTDH) method for the approximation of multi-particle time-dependent Schrödinger equations. The MCTDH method approximates the multivariate wave function by a linear combination of products of univariate functions and replaces the high-dimensional linear Schrödinger equation by a coupled system of ordinary differential equations and low-dimensional nonlinear partial differential equations. The main result of this...

Computer simulation of the atomic behaviour in condensed phases.

Antoni Giró Roca, Joan Angel Padró (1987)

Qüestiió

Molecular dynamics simulation method for the study of condensed phases of matter is described in this paper. Computer programs for the simulation of atomic motion have been developed. Time-saving techniques, like the cellular method have been incorporated in order to optimize the available computer resources. We have applied this method to the simulation of Argon near its melting point. Differences in the structure, thermodynamic properties and time correlation functions of solid and liquid phases...

Convergence of gradient-based algorithms for the Hartree-Fock equations

Antoine Levitt (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], but, to our knowledge, no complete convergence proof has been published, except for the large-Z result of [M. Griesemer and F. Hantsch, Arch. Rational Mech. Anal. (2011) 170]. In this paper, we prove the convergence of...

Convergence of gradient-based algorithms for the Hartree-Fock equations

Antoine Levitt (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], but, to our knowledge, no complete convergence proof has been published, except for the large-Z result of [M. Griesemer and F. Hantsch, Arch. Rational Mech. Anal. (2011) 170]. In this paper, we prove the convergence of...

Convergence of gradient-based algorithms for the Hartree-Fock equations∗

Antoine Levitt (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], but, to our knowledge, no complete convergence proof has been published, except for the large-Z result of [M. Griesemer and F. Hantsch, Arch. Rational Mech. Anal. (2011) ...

Converging self-consistent field equations in quantum chemistry – recent achievements and remaining challenges

Konstantin N. Kudin, Gustavo E. Scuseria (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper reviews popular acceleration techniques to converge the non-linear self-consistent field equations appearing in quantum chemistry calculations with localized basis sets. The different methodologies, as well as their advantages and limitations are discussed within the same framework. Several illustrative examples of calculations are presented. This paper attempts to describe recent achievements and remaining challenges in this field.

Diffusion Monte Carlo method: Numerical Analysis in a Simple Case

Mohamed El Makrini, Benjamin Jourdain, Tony Lelièvre (2007)

ESAIM: Mathematical Modelling and Numerical Analysis


The Diffusion Monte Carlo method is devoted to the computation of electronic ground-state energies of molecules. In this paper, we focus on implementations of this method which consist in exploring the configuration space with a fixed number of random walkers evolving according to a stochastic differential equation discretized in time. We allow stochastic reconfigurations of the walkers to reduce the discrepancy between the weights that they carry. On a simple one-dimensional example, we prove...

First-order semidefinite programming for the two-electron treatment of many-electron atoms and molecules

David A. Mazziotti (2007)

ESAIM: Mathematical Modelling and Numerical Analysis


The ground-state energy and properties of any many-electron atom or molecule may be rigorously computed by variationally computing the two-electron reduced density matrix rather than the many-electron wavefunction. While early attempts fifty years ago to compute the ground-state 2-RDM directly were stymied because the 2-RDM must be constrained to represent an N-electron wavefunction, recent advances in theory and optimization have made direct computation of the 2-RDM possible. The constraints in...

Local Changes in Lipid Composition to Match Membrane Curvature

Rolf J. Ryham (2016)

Molecular Based Mathematical Biology

A continuum mechanical model based on the Helfrich Hamiltonian is devised to investigate the coupling between lipid composition and membrane curvature. Each monolayer in the bilayer is modeled as a freely deformable surface with a director field for lipid orientation. A scalar field for the mole fraction of two lipid types accounts for local changes in composition. It allows lipids to access monolayer regions favorable to their intrinsic curvature at the expense of increasing entropic free energy....

Multiscale Materials Modelling: Case Studies at the Atomistic and Electronic Structure Levels

Emilio Silva, Clemens Först, Ju Li, Xi Lin, Ting Zhu, Sidney Yip (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Although the intellectual merits of computational modelling across various length and time scales are generally well accepted, good illustrative examples are often lacking. One way to begin appreciating the benefits of the multiscale approach is to first gain experience in probing complex physical phenomena at one scale at a time. Here we discuss materials modelling at two characteristic scales separately, the atomistic level where interactions are specified through classical potentials and the...

Numerical analysis of the adiabatic variable method for the approximation of the nuclear hamiltonian

Yvon Maday, Gabriel Turinici (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Many problems in quantum chemistry deal with the computation of fundamental or excited states of molecules and lead to the resolution of eigenvalue problems. One of the major difficulties in these computations lies in the very large dimension of the systems to be solved. Indeed these eigenfunctions depend on 3 n variables where n stands for the number of particles (electrons and/or nucleari) in the molecule. In order to diminish the size of the systems to be solved, the chemists have proposed many...

Currently displaying 1 – 20 of 40

Page 1 Next