Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization

M. Efendiev; S. Zelik

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 6, page 961-989
  • ISSN: 0294-1449

How to cite

top

Efendiev, M., and Zelik, S.. "Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization." Annales de l'I.H.P. Analyse non linéaire 19.6 (2002): 961-989. <http://eudml.org/doc/78568>.

@article{Efendiev2002,
author = {Efendiev, M., Zelik, S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {almost-periodic media; long-time behavior},
language = {eng},
number = {6},
pages = {961-989},
publisher = {Elsevier},
title = {Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization},
url = {http://eudml.org/doc/78568},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Efendiev, M.
AU - Zelik, S.
TI - Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 6
SP - 961
EP - 989
LA - eng
KW - almost-periodic media; long-time behavior
UR - http://eudml.org/doc/78568
ER -

References

top
  1. [1] Babin A.V., Vishik M.I., Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992. Zbl0778.58002MR1156492
  2. [2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978. Zbl0404.35001MR503330
  3. [3] Bourgeat A., Pankratov L., Homogenization of semilinear parabolic equations in domains with spherical traps, Appl. Anal.64 (3–4) (1997) 303-317. Zbl0878.35013MR1460086
  4. [4] Freitas P., Rocha C., Lyapunov functional and stability for FitzHugh–Nagumo systems, JDE169 (2001) 208-227. Zbl0974.35051MR1808465
  5. [5] De Giorgi E., Spagnolo S., Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine, Boll. Unione Mat. Ital8 (1973) 391-411. Zbl0274.35002MR348255
  6. [6] Hale J., Asymptotic Behaviour of Dissipative Systems, Math. Surveys Monographs, 25, American Mathematical Society, Providence, RI, 1987. Zbl0642.58013MR941371
  7. [7] Kozlov S., Averaging differential equations with almost-periodic rapidly oscillating coefficients, Math. USSR Sb.35 (4) (1979) 481-498. Zbl0422.35003
  8. [8] Kuznetsov Y., Elements of Applied Bifurkation Theory, Applied Math. Sciences, 112, Springer-Verlag, New York, 1995. Zbl0829.58029MR1344214
  9. [9] Ladyzhenskaya O., Solonnikov V., Uraltseva N., Linear and Quasilinear Parabolic Equations, Nauka, Moscow, 1967. 
  10. [10] Levitan B., Almost-periodic Functions, Gostekhizdat, Moscow, 1953. Zbl1222.42002MR60629
  11. [11] Levitan B., Zhikov V., Almost-periodic Functions and Differential Equations, Moscow Univ. Press, Moscow, 1978. Zbl0414.43008MR509035
  12. [12] Pankratov L., Chueshov I., Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients, Sb. Math.190 (9) (1999) 1325-1352. Zbl0940.35029MR1725227
  13. [13] Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. Zbl0662.35001MR953967
  14. [14] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. Zbl0387.46032MR503903
  15. [15] Vishik M., Asymptotic Behaviour of Solutions of Evolutionary Equations, Cambridge Univ. Press, Cambridge, 1992. Zbl0797.35016MR1215488
  16. [16] M. Vishik, Attractors of Equations Arising in Mathematical Physics with Rapidly Oscillating Terms and their Averadging, Talk on the Conference Dedicated to the 60th Birthday of R. Temam (Paris, Poitiers, 2000) (joint work with B. Fiedler). 
  17. [17] Vishik M., Zelik S., The regular attractor for a non-linear elliptic system in a cylindrical domain, Math. Sb.190 (6) (1999) 803-834. Zbl0940.35085MR1719581
  18. [18] Zelik S., The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and it's dimension, Rend. Acad. Naz. Sci. XL Mem. Mat. Appl.24 (2000) 1-25. MR1827004
  19. [19] Zelik S., The dynamics of fast non-autonomous travelling waves and homogenization, in: Carrive M., (Eds.), Actes des journées « Jeunes numériciens » en l'honneur du 60ème anniversaire du Professeur Roger Temam, Poitiers, France, Mars 9–10, 2000, Poitou-Charentes : Atlantique, 2001, pp. 131-142, (English). Zbl1004.35010
  20. [20] Zhikov V., Kozlov S., Oleinik O., Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994. Zbl0838.35001MR1329546

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.