Boundary layer formation in the transition from the porous media equation to a Hele–Shaw flow
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 1, page 13-36
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGil, O., and Quirós, F.. "Boundary layer formation in the transition from the porous media equation to a Hele–Shaw flow." Annales de l'I.H.P. Analyse non linéaire 20.1 (2003): 13-36. <http://eudml.org/doc/78570>.
@article{Gil2003,
author = {Gil, O., Quirós, F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {convergence of positivity sets; porous media equation; mesa problem; boundary layer; singular limit; free boundary; Cauchy-Dirichlet problems},
language = {eng},
number = {1},
pages = {13-36},
publisher = {Elsevier},
title = {Boundary layer formation in the transition from the porous media equation to a Hele–Shaw flow},
url = {http://eudml.org/doc/78570},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Gil, O.
AU - Quirós, F.
TI - Boundary layer formation in the transition from the porous media equation to a Hele–Shaw flow
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 1
SP - 13
EP - 36
LA - eng
KW - convergence of positivity sets; porous media equation; mesa problem; boundary layer; singular limit; free boundary; Cauchy-Dirichlet problems
UR - http://eudml.org/doc/78570
ER -
References
top- [1] Aronson D.G., Gil O., Vázquez J.L., Limit behaviour of focusing solutions to nonlinear diffusions, Comm. Partial Differential Equations23 (1–2) (1998) 307-332. Zbl0895.35055MR1608532
- [2] Bénilan Ph., Boccardo L., Herrero M.A., On the limit of solutions of ut=Δum as m→∞, Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale (1989) 1-13.
- [3] Bénilan Ph., Crandall M.G., The continuous dependence on ϕ of solutions of ut−Δϕ(u)=0, Indiana Univ. Math. J.30 (1981) 161-177. Zbl0482.35012
- [4] Bénilan Ph., Crandall M.G., Sacks P., Some L1 existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions, Appl. Math. Optim.17 (3) (1988) 203-224. Zbl0652.35043MR922980
- [5] Bénilan Ph., Igbida N., Singular limit of perturbed nonlinear semigroups, Comm. Appl. Nonlinear Anal.3 (4) (1996) 23-42. Zbl0870.35014MR1420283
- [6] Bénilan Ph., Igbida N., La limite de la solution de ut=Δpum lorsque m→∞, C. R. Acad. Sci. Paris Sér. I Math.321 (1995) 1323-1328. Zbl0841.35013
- [7] Caffarelli L.A., Friedman A., Continuity of the density of a gas flow in a porous medium, Trans. Amer. Math. Soc.252 (1979) 99-113. Zbl0425.35060MR534112
- [8] Caffarelli L.A., Friedman A., Asymptotic behaviour of solutions of ut=Δum as m→∞, Indiana Univ. Math. J.36 (4) (1987) 711-718. Zbl0651.35039
- [9] Crowley A.B., On the weak solution of moving boundary problems, J. Inst. Math. Appl.24 (1979) 43-57. Zbl0416.65073MR539372
- [10] Di Benedetto E., Friedman A., The ill-posed Hele–Shaw model and the Stefan problem for supercooled water, Trans. Amer. Math. Soc.282 (1) (1984) 183-204. Zbl0621.35102MR728709
- [11] Elliot C.M., Herrero M.A., King J.R., Ockendon J.R., The mesa problem: diffusion patterns for ut=∇(um∇u) as m→∞, IMA J. Appl. Math.37 (1986) 147-154. Zbl0655.35034
- [12] Elliot C.M., Janovský V., A variational inequality approach to Hele–Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburgh Sect. A88 (1981) 93-107. Zbl0455.76043MR611303
- [13] Friedman A., Höllig K., On the mesa problem, J. Math. Anal. Appl.123 (2) (1987) 564-571. Zbl0631.35046MR883709
- [14] Friedman A., Huang S.Y., Asymptotic behavior of solutions of ut=Δφm(u) as m→∞ with inconsistent initial values, in: Analyse Mathématique et applications, Gauthier-Villars, Paris, 1988, pp. 165-180. Zbl0676.35041
- [15] Gil O., Quirós F., Convergence of the porous media equation to Hele–Shaw, Nonlinear Anal.44 (2001) 1111-1131. Zbl1016.35042MR1830861
- [16] O. Gil, F. Quirós, J.L. Vázquez, Zero specific heat limit and large time asymptotics for the one-phase Stefan problem, Preprint, 2002.
- [17] Igbida N., The mesa-limit of the porous medium equation and the Hele–Shaw problem, Differential Integral Equations15 (2) (2002) 129-146. Zbl1011.35080MR1870466
- [18] Kato T., Schrödinger operators with singular potentials, Israel J. Math.13 (1972) 133-148. Zbl0246.35025MR333833
- [19] Louro B., Rodrigues J.F., Remarks on the quasi-steady one phase Stefan problem, Proc. Roy. Soc. Edinburgh Sect. A102 (1986) 263-275. Zbl0608.35081MR852360
- [20] Rodriguez A., Vázquez J.L., Obstructions to existence in fast-diffusion equations, J. Differential Equations184 (2002) 348-385. Zbl1007.35042MR1929882
- [21] Sacks P.E., A singular limit problem for the porous medium equation, J. Math. Anal. Appl.140 (2) (1989) 456-466. Zbl0688.35035MR1001869
- [22] Saffman P.G., Taylor G.I., The penetration of fluid into a porous medium Hele–Shaw cell, Proc. Roy. Soc. A245 (1958) 312-329. Zbl0086.41603MR97227
- [23] J.L. Vázquez, A new look at the zero specific heat limit of the Stefan problem, Preprint, 1998.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.