Boundary layer formation in the transition from the porous media equation to a Hele–Shaw flow

O. Gil; F. Quirós

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 1, page 13-36
  • ISSN: 0294-1449

How to cite

top

Gil, O., and Quirós, F.. "Boundary layer formation in the transition from the porous media equation to a Hele–Shaw flow." Annales de l'I.H.P. Analyse non linéaire 20.1 (2003): 13-36. <http://eudml.org/doc/78570>.

@article{Gil2003,
author = {Gil, O., Quirós, F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {convergence of positivity sets; porous media equation; mesa problem; boundary layer; singular limit; free boundary; Cauchy-Dirichlet problems},
language = {eng},
number = {1},
pages = {13-36},
publisher = {Elsevier},
title = {Boundary layer formation in the transition from the porous media equation to a Hele–Shaw flow},
url = {http://eudml.org/doc/78570},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Gil, O.
AU - Quirós, F.
TI - Boundary layer formation in the transition from the porous media equation to a Hele–Shaw flow
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 1
SP - 13
EP - 36
LA - eng
KW - convergence of positivity sets; porous media equation; mesa problem; boundary layer; singular limit; free boundary; Cauchy-Dirichlet problems
UR - http://eudml.org/doc/78570
ER -

References

top
  1. [1] Aronson D.G., Gil O., Vázquez J.L., Limit behaviour of focusing solutions to nonlinear diffusions, Comm. Partial Differential Equations23 (1–2) (1998) 307-332. Zbl0895.35055MR1608532
  2. [2] Bénilan Ph., Boccardo L., Herrero M.A., On the limit of solutions of ut=Δum as m→∞, Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale (1989) 1-13. 
  3. [3] Bénilan Ph., Crandall M.G., The continuous dependence on ϕ of solutions of ut−Δϕ(u)=0, Indiana Univ. Math. J.30 (1981) 161-177. Zbl0482.35012
  4. [4] Bénilan Ph., Crandall M.G., Sacks P., Some L1 existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions, Appl. Math. Optim.17 (3) (1988) 203-224. Zbl0652.35043MR922980
  5. [5] Bénilan Ph., Igbida N., Singular limit of perturbed nonlinear semigroups, Comm. Appl. Nonlinear Anal.3 (4) (1996) 23-42. Zbl0870.35014MR1420283
  6. [6] Bénilan Ph., Igbida N., La limite de la solution de ut=Δpum lorsque m→∞, C. R. Acad. Sci. Paris Sér. I Math.321 (1995) 1323-1328. Zbl0841.35013
  7. [7] Caffarelli L.A., Friedman A., Continuity of the density of a gas flow in a porous medium, Trans. Amer. Math. Soc.252 (1979) 99-113. Zbl0425.35060MR534112
  8. [8] Caffarelli L.A., Friedman A., Asymptotic behaviour of solutions of ut=Δum as m→∞, Indiana Univ. Math. J.36 (4) (1987) 711-718. Zbl0651.35039
  9. [9] Crowley A.B., On the weak solution of moving boundary problems, J. Inst. Math. Appl.24 (1979) 43-57. Zbl0416.65073MR539372
  10. [10] Di Benedetto E., Friedman A., The ill-posed Hele–Shaw model and the Stefan problem for supercooled water, Trans. Amer. Math. Soc.282 (1) (1984) 183-204. Zbl0621.35102MR728709
  11. [11] Elliot C.M., Herrero M.A., King J.R., Ockendon J.R., The mesa problem: diffusion patterns for ut=∇(um∇u) as m→∞, IMA J. Appl. Math.37 (1986) 147-154. Zbl0655.35034
  12. [12] Elliot C.M., Janovský V., A variational inequality approach to Hele–Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburgh Sect. A88 (1981) 93-107. Zbl0455.76043MR611303
  13. [13] Friedman A., Höllig K., On the mesa problem, J. Math. Anal. Appl.123 (2) (1987) 564-571. Zbl0631.35046MR883709
  14. [14] Friedman A., Huang S.Y., Asymptotic behavior of solutions of ut=Δφm(u) as m→∞ with inconsistent initial values, in: Analyse Mathématique et applications, Gauthier-Villars, Paris, 1988, pp. 165-180. Zbl0676.35041
  15. [15] Gil O., Quirós F., Convergence of the porous media equation to Hele–Shaw, Nonlinear Anal.44 (2001) 1111-1131. Zbl1016.35042MR1830861
  16. [16] O. Gil, F. Quirós, J.L. Vázquez, Zero specific heat limit and large time asymptotics for the one-phase Stefan problem, Preprint, 2002. 
  17. [17] Igbida N., The mesa-limit of the porous medium equation and the Hele–Shaw problem, Differential Integral Equations15 (2) (2002) 129-146. Zbl1011.35080MR1870466
  18. [18] Kato T., Schrödinger operators with singular potentials, Israel J. Math.13 (1972) 133-148. Zbl0246.35025MR333833
  19. [19] Louro B., Rodrigues J.F., Remarks on the quasi-steady one phase Stefan problem, Proc. Roy. Soc. Edinburgh Sect. A102 (1986) 263-275. Zbl0608.35081MR852360
  20. [20] Rodriguez A., Vázquez J.L., Obstructions to existence in fast-diffusion equations, J. Differential Equations184 (2002) 348-385. Zbl1007.35042MR1929882
  21. [21] Sacks P.E., A singular limit problem for the porous medium equation, J. Math. Anal. Appl.140 (2) (1989) 456-466. Zbl0688.35035MR1001869
  22. [22] Saffman P.G., Taylor G.I., The penetration of fluid into a porous medium Hele–Shaw cell, Proc. Roy. Soc. A245 (1958) 312-329. Zbl0086.41603MR97227
  23. [23] J.L. Vázquez, A new look at the zero specific heat limit of the Stefan problem, Preprint, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.