The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity

Riccardo Adami; Gianfausto Dell'Antonio; Rodolfo Figari; Alessandro Teta

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 3, page 477-500
  • ISSN: 0294-1449

How to cite

top

Adami, Riccardo, et al. "The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity." Annales de l'I.H.P. Analyse non linéaire 20.3 (2003): 477-500. <http://eudml.org/doc/78587>.

@article{Adami2003,
author = {Adami, Riccardo, Dell'Antonio, Gianfausto, Figari, Rodolfo, Teta, Alessandro},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {3D nonlinear Schrödinger equation; point interactions; nonlinear Dirac delta potentials; existence and uniqueness in energy space; Cauchy problem},
language = {eng},
number = {3},
pages = {477-500},
publisher = {Elsevier},
title = {The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity},
url = {http://eudml.org/doc/78587},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Adami, Riccardo
AU - Dell'Antonio, Gianfausto
AU - Figari, Rodolfo
AU - Teta, Alessandro
TI - The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 3
SP - 477
EP - 500
LA - eng
KW - 3D nonlinear Schrödinger equation; point interactions; nonlinear Dirac delta potentials; existence and uniqueness in energy space; Cauchy problem
UR - http://eudml.org/doc/78587
ER -

References

top
  1. [1] Adami R., Teta A., A Simple Model of Concentrated Nonlinearity, Operator Theory: Advances and Applications, 108, 1999, 183–189. Zbl0967.81010MR1708796
  2. [2] Adami R., Teta A., A class of nonlinear Schrödinger equation with concentrated nonlinearity, J. Funct. Anal.180 (2001) 148-175. Zbl0979.35130MR1814425
  3. [3] Adams R., Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
  4. [4] Albeverio S., Gesztesy F., Högh-Krohn R., Holden H., Solvable Models in Quantum Mechanics, Springer-Verlag, New York, 1988. Zbl0679.46057MR926273
  5. [5] Cazenave T., An Introduction to Nonlinear Schrödinger Equation, Textos de Métodos Matematicos, 26, IMUFRJ, Rio de Janeiro, 1993. 
  6. [6] Cazenave T., Blow up and Scattering in the Nonlinear Schrödinger Equation, Textos de Métodos Matematicos, 30, IMUFRJ, Rio de Janeiro, 1996. 
  7. [7] Erdely A. et al. , Tables of Integral Transform, McGraw-Hill, New York, 1954. 
  8. [8] Ginibre J., Velo G., On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal.32 (1979) 1-32. Zbl0396.35028MR533218
  9. [9] Gorenflo R., Vessella S., Abel Integral Equations, Springer-Verlag, Berlin, 1978. Zbl0717.45002MR1095269
  10. [10] Kappel F., Kunisch K., Invariance results for Delay and Volterra equations in fractional order Sobolev spaces, Trans. Math. Soc.304 (1) (1987) 1-51. Zbl0635.45017MR906804
  11. [11] Kato T., On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique Théorique46 (1987) 113-129. Zbl0632.35038MR877998
  12. [12] Miller R.K., Nonlinear Volterra Integral Equations, W.A. Benjamin, 1971. Zbl0448.45004MR511193
  13. [13] Sayapova M.R., Yafaev D.R., The evolution operator for time-dependent potentials of zero radius, Proc. Stek. Inst. Math.2 (1984) 173-180. Zbl0599.35035MR720214
  14. [14] Teta A., Quadratic forms for singular perturbations of the Laplacian, Publ. R.I.M.S. Kyoto Univ.26 (1990) 803-817. Zbl0735.35048MR1082317
  15. [15] Weinstein M.I., NLSE and sharp interpolation estimates, Comm. Math. Phys.87 (1982/83) 567-576. Zbl0527.35023MR691044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.